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   In the case study presented here, the calibrated parameters of a Conceptual Rainfall-Runoff (CRR) 
model could not be uniquely identified. Moreover, the Posterior Probability distribution (PPD) of Model 
Parameters varied among basin depending upon the basin attributes and data aspects. So the assessment 
of parameter uncertainty of CRR models should become the integral part of regionalisation. For that 
reason, we proposed a regionalisation scheme which instead of regionalizing the single best value of 
model parameters, regionalizes the PPD of model parameters. Subsequently the number of model 
parameters are sampled from the estimated distribution and fed into the model. Regionalisation of PPD 
addresses the effect of model parameter uncertainty in the result of regionalisation. The uncertainties in 
model prediction quantified from proposed methods closely followed the prediction uncertainties 
quantified from PPD of model parameters conditioned on observation in the presented case study. 
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1. INTRODUCTION 
 
   Conceptual Rainfall Runoff models (CRR) are 
popular tools for modeling flow at gauged site. 
Though some parameters of CRR model have a 
physical basis, they are effective values at the 
catchments scale and are hardly measurable in the 
field. Therefore, they are obtained by calibrating the 
model against observed data. This need to calibrate 
the parameters has led to linking of model 
parameters of CRR models with catchment 
attributes in order to model flow at ungauged site. 
Number of methods for transferring or regionalizing 
the parameters have been explored in the past1), 2). 
Among various method, the use of multiple 
regressions to relate Model Parameters (MPs) to 
measurable Catchments Attributes (CAs) is widely 
used in modeling ungauged basin 2), 3).This typically 
results in set of multiple regression equation which 
estimates one model parameter at a time rather than 
equations that jointly estimate model parameters. 
Thus any information about covariances and 
variances of model parameter is usually lost.   
   Regionalizations using multiple regressions are 
straight forward, but are illusive due to the existence 
of multiple optima and high interaction between 

subsets of fitted MPs. The need to address various 
sources of uncertainty that arises during the process 
of regionalisation of the parameters has drawn much 
attention in recent years.  Merz and Bloschl 1) 
addressed the issue of the uncertainties in MPs 
through a comparison of MPs for two sub periods. 
Sequential regression (SR) addresses this issue by 
combining model calibration with regionalization. 
Moreover, Regional calibration4), 5) also referred to 
as indirect calibration method addressed this issues 
by skipping the direct calibration of models. This 
approach calibrates the MPs at all site 
simultaneously in an attempt to achieve the best 
regional relationship. Similarly, Wagener et al.2) 
used weighted regression in higher weighted is 
provide to the parameters having higher 
identifiability and vice versa to reduce the influence 
of gauged catchment parameters that were poorly 
identified during calibration. 
     However, none of these approaches explicitly 
used posterior distribution of model parameters 
while doing regionalization. Though SR relaxes the 
assumption that the model parameters are 
independent and helps in improving the 
identifiability of MPs, it is difficult to apply without 
introducing bias into the regionalized parameters2).  



Similarly, regional calibration method failed to 
identify the unique regional relationship thereby 
inducing considerable uncertainties in model 
prediction4).  Weighted regression also does not 
introduce weights to allow for the model’s local 
performance and neglects the interdependency 
among model parameters. Furthermore, the 
determination of identifiability is dependent on the 
sample size. In this context, this paper aimed at 
developing an approach for the regionalisation of 
parameters of CRR models considering the 
uncertainty in the calibrated model parameters. The 
methodology is demonstrated through a case study 
that includes number of small to medium size basin 
located in different geographic and climatic regions.  
 
2. METHODOLOGY 
 
   In most CRR models, the model parameters are 
typically strongly correlated leading to the existence 
of multiple optima. Thus such information should be 
included in deriving a regionalisation procedure. To 
accomplish this, it is assumed that the Posterior 
Probability Distribution (PPD) of MPs of 
parsimonious models can be approximated by 
multivariate normal distribution (i.e. the posterior 
mean and entries of variance covariance matrix) and 
they vary among basin depending on basin attributes 
and data aspects. Consequently, the determination of 
functional relationship between the characteristic 
parameters of PPD of MPs and basin attributes is 
plausible.  
   The outline of the regionalisation schemes 
proposed in this study is as follows:  
1. Select a number of gauged basin and estimate 

vectors of relevant catchment attribute.  
2. Calibrate the MPs of the selected hydrological 

model for all basins using Markov Chain Monte 
Carlo method. Subsequently estimate the 
Multivariate Posterior joint Probability 
Distribution function p(θ|D) (PPD) of hydrologic 
model parameters for all basins assuming that it 
can be sufficiently approximated by multivariate 
normal distribution (Eq.1).  
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(posterior mean),θ is the model parameter. 

3. Identify the posterior mean vector µ, and the set 
of pair wise covariances Cov (Xi, Xj), including 
the variance Var (Xi) from the estimated PPD of 
model parameters.  

4. Identify the functional relationship between the 
characteristic parameters of PPD of model 
parameters and catchment attributes.  

5. Reconstruct the PPD of model parameters at 

ungauged basin from the functional relationship 
derived in step 4. Subsequently sample model 
parameters ( θ ) falling in a pre-specified 
confidence region i.e. the parameters set that 
satisfies Eq.2. 
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6. Estimate the ensemble of simulated flow from 
number the parameters sampled in step 5 

This approach relaxes the assumption that parameter 
is independent and thereby preserves the 
information on the correlation between MPs. 
 
3. CASE STUDIES 
 
(1) Study area and data aspects 
   The 26 small to medium size basins situated in 
different geographic and climate zones (Table 1) 
were selected. The 21 catchments were considered 
for calibration of regional model and 5 catchments 
each located in 5 different countries (e.g., 330, 
Ukaibashi, H744010, 27035and 215004) were 
presumed ungauged for the appraisal of the 
performance of regionalisation schemes. 
  To link the calibrated values of model parameters 
with easily measurable basin attributes, number of 
landscape attributes were selected in this study, 
which are as follow: (1) area (km2), (2) average 
topographic index (Ave. Topographic index), 3) 
shape factor (km/km2), 4) Basin average saturated 
transmissivity (Ave. Transmissivity) (cm/h), 5) 
basin average maximum root zone depth (Ave. 
SRMAX) (m), 6) mean Elevation (m), 7) average 
basin slope (%), 8) drainage density (km/km2).  
 
Table 1 Description of selected basins 

ID Catchment AreaKm2 ID Catchment AreaKm2 
1 330a 1980 14 J3024010e 43 
2 795 a 1148 15 J4124420 e 32 
3 390 a 554 16 J4712010 e 142 
4 Torinkyob 1095 17 H2001020 e 98 
5 Arakawa b 927 18 Y5615030 e 297 
6 66011c 344 19 K0753210 e 371 
7 62011 c 893 20 K0813020 e 193 
8 23006 c 331 21 V3517010 e 25 
9 27034 c 510 22 395.5a 683 
10 204017d 82 23 Ukaibashi b 487 
11 302200 d 448 24 K0744010 e 181 
12 218001 d 93 25 27035 c 282 
13 145018 d 81 26 204016 d 104 

a) catchments located in Middle  mountain physiographic 
region of Nepal and data were obtained from Department of 
Hydrology and Meteorology (DHM), Nepal, b) Catchments 
located in Japan, and data were obtained from Ministry of Land, 
Infrastructure and Transport (MLIT), Japan, c) catchments 
located in UK, and data were obtained from 
http://www.ceh.ac.uk/data/nrfa/index.html, d) catchments 
located in eastern Australia, and data were obtained from 
http://www.stars.net.au/tdwg/?datasets e)catchments located in 
France, and data were obtained from Model Parameter 
Estimation Experiment (MOPEX)-France. 



Moreover, as the basins selected in the study are 
situated in different climate zones, a number of 
climate attributes were also considered and are as 
follow: (1) annual average rainfall (mm), (2) 
variance of monthly precipitation measured in mm, 
and (3) wetness index. In order to extract the 
landscape attributes for all basins, the land use data 
obtained from International Geosphere-Biosphere 
Programme (IGBP), soil data obtained from Food 
and Agricultural Organization (FAO), and The 
Shuttle Radar Topography Mission (SRTM) data 
that cover the entire globe with a 3-arc second 
(approx. 90m) digital elevation model were used.  
 
(2) Hydrological model 
  The TOPMODEL6), which is a variable 
contributing area physically-conceived 
semi-distributed hydrological model, was selected. 
Based on a simple theory of hydrological similarity 
of points in a catchment, TOPMODEL makes 
distributed prediction of catchment response. These 
points of hydrological similarity are identified by an 
index that is derived from catchment topography. 
Flow is separated into surface runoff generated by 
rainfall on saturated contributing areas and 
subsurface downhill flow. TOPMODEL uses four 
basic assumptions to relate local down slope flow 
from a point to discharge at the catchment outlet: 1) 
The dynamics of the saturated zone are 
approximated by successive steady state 
representations, 2) The recharge entering the water 
table is spatially homogeneous, 3) The effective 
hydraulic gradient of the saturated zone is 
approximated by the local surface topographic 
gradient, 4) The distribution of down slope 
transmissivity To with depth is a function of storage 
deficit. The parameters requiring calibration are the 

decay parameter (m) (m), lateral transmissivity (To) 
(m2/h), delay factor (Td) (h/m), maximum root zone 
storage (Srmax) (m), and parameters related to 
channel routing. As we focused on modeling flow in 
small to medium size basin at daily time scale, the 
routing of flow is not implemented. Moreover, the 
Srmax parameter was estimated from the root zone 
depth and soil properties6). The inputs of the model 
are the land cover map, digital elevation model, soil 
map, daily precipitation, and potential evaporation 
data and daily streamflow data for calibration of 
parameters. 
 
(3) Model calibration  
   As multi-objective calibration eases in retrieving 
more information from the observed data and 
provides insight into parameter uncertainty and 
limitation of model structure, the multi-objective 
shuffle complex evolutionary algorithm7) 
(MOSCEM-UA) was used. The primary strength of 
MOSCEM-UA is the estimation of the PPD of CRR 
model parameters and is best suited for calibration 
of models that have small number of model 
parameters8). For calibration the following goodness 
of fit criteria were used: (1) The Nash Sutcliffe 
efficiency (NSE), (2) NSE for the transformed flow 
to consider the heteroscedastic variance in flow, 
here the flow is transformed explicitly by 
using,  , where λ =0.3, z is the 
transformed flow, and y is the observed flow before 
evaluating the objective function, (3) NSE for low 
flow, and (4) NSE for peak flow. The result of 
model calibration i.e. the most probable value of 
MPs, the coefficient of variation (CV) of model 
parameters and correlation coefficient of MPs, for 
all basins is shown in Table 2. The variation in the 
CV of model parameters indicates that the degree of 
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Table 2 Most probable parameters, coefficient of variation, and correlations among model parameters 

Posterior mean Coefficient of variation Correlation coefficient Basin 
ID m(m) To (m2/h) Td (h/m) m To Td (m,To) (m,Td) (To,Td) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

0.115 
0.05 
0.09 
0.11 
0.027 
0.013 
0.027 
0.015 
0.011 
0.068 
0.275 
0.03 
0.275 
0.095 
0.15 
0.045 
0.045 
0.04 
0.037 
0.03 
0.038 

10 
6 
5 
5 
3.75 
4.2 
6 
3.5 
4.85 
5.2 
1.25 
2.25 
1.25 
4.8 
5.5 
6.2 
4.1 
4.8 
4.7 
4.5 
6.25 

0.4 
0.5 
1.5 
1 
0.75 
0.5 
2.5 
2 
4 
1.5 
2.5 
1 
1.5 
1 
1.2 
1.5 
2.5 
1.6 
0.5 
1.8 
1 

0.059 
0.380 
0.171 
0.238 
0.178 
0.043 
0.095 
0.089 
0.108 
0.025 
0.293 
0.417 
0.210 
0.056 
0.149 
0.163 
0.193 
0.150 
0.056 
0.144 
0.078 

0.522 
0.082 
0.065 
0.087 
0.080 
0.016 
0.044 
0.038 
0.042 
0.032 
0.297 
0.199 
0.333 
0.008 
0.041 
0.034 
0.037 
0.057 
0.023 
0.133 
0.070 

0.818 
0.421 
1.004 
0.844 
0.759 
0.698 
0.710 
0.674 
0.646 
0.642 
1.404 
0.743 
1.444 
0.677 
0.840 
0.691 
0.648 
0.704 
0.681 
0.649 
0.640 

0.296 
-0.072 
0.047 
0.623 
0.781 
0.085 
0.776 
0.158 
-0.502 
0.481 
-0.831 
-0.282 
-0.340 
-0.050 
0.715 
-0.515 
-0.571 
0.123 
0.327 
-0.491 
-0.279 

-0.359 
-0.811 
-0.609 
-0.459 
-0.710 
-0.014 
-0.171 
-0.204 
-0.106 
-0.039 
0.324 
-0.715 
0.110 
-0.031 
-0.188 
-0.201 
-0.337 
-0.222 
-0.053 
0.866 
-0.005 

-0.699 
0.021 
0.203 
-0.163 
-0.385 
-0.153 
-0.252 
0.012 
-0.008 
-0.098 
-0.498 
0.416 
-0.055 
0.073 
-0.185 
0.087 
0.112 
-0.113 
-0.015 
-0.596 
0.077 



uncertainties in MPs varies from basin to basin 
depending on the basin attributes and data aspect. 
Moreover, the model parameter m and To were 
found comparatively sensitive than Td. Moreover, 
the correlation between the model parameters also 
varied among basins. 
 
(4) Regionalisation of posterior probability 
distribution of model parameters 
   The posterior probability distribution can be 
entirely characterized by its mean, set of pair wise 
covariance and variances if it can be sufficiently 
approximated by multivariate normal distribution. 
For the structure of model use in this study, the 
number of characteristic parameters of PPD to be 
estimated via regional link function is nine i.e., three 
posterior mean and six entries of variance 
covariance matrix. The variance covariance matrix 
for the parameters of TOPMODEL used in this 
study can be expressed as following (Eq.2): 
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where  is the variance covariance matrix for 

the ith basin, COV(m,To)i, is the covariance between 
m and To (model parameter) for ith basin, and 
Var(m)i is the variance of the model parameter m for 
ith basin. The linear correlation between the 
characteristics parameters of probability distribution 
of model parameters and catchment attributes (see 
Fig.1) apparently shows the prospect for developing 
the statistical relationship between the above 
mentioned dependent and independent variable 
(CAs). Moreover, some of the attributes were 
strongly correlated with each other. So to reduce the 
effect of multicollinearity, we combined various 
independent variables and selected only those 
combined variables for which the Variation Inflation 
Factors (VIF) is less than 10. The VIF expresses the 
degree to which collinearity among the predictors 
degrades the precision of an estimate.  

∑i

  The close look on the variance covariance matrix 
revels that the interaction between MPs varied 
among basins. The linear correlation between the 
catchment attributes and covariance between model 
parameters reveals the following: 
1) For basin with larger area and basin slope, the 
covariance between m and To is positive.  
2) For basins with higher average topographic index 
and higher variability in monthly average rainfall, 
the covariance between m and Td is negative.  
3) For larger basins, the covariance between To and  
Td is negative, whereas it is positive for basins 
characterized with lower average topographic index. 

 
Fig.1 Linear correlation calculated between catchment attributes 
and both posterior mean value of model parameters (MPs) and 
entries of variance covariance matrix of the posterior 
distribution of MPs approximated by multivariate normal 
distribution. The attributes that are significantly correlated with 
model parameters are marked with black and white marker  
 

a) Regionalisation procedure 

     A close look into the work by Uhlenbrook et 
al. (1999) and Seibert (1997) reveals that the model 
parameter uncertainty depends on basins, forcing 
data and the structure of the hydrological model 
used. Moreover, Fig.1 also reveals that the entries of 
parameter variance covariance matrix are 
significantly correlated with few basin attributes. 
So, based on the assumption that basin with similar 
characteristics and data aspects will have similar 
PPD of model parameters, development of 
functional relation between characteristics 
parameters of PPD (i.e. posterior mean and entries 
of parameter variance covariance matrix) and 
catchment attributes is plausible. Assuming that the 
combinations of attributes are able to capture the 
exclusivity of each catchment, the method based on 
regional link function (i.e. eH +Φ= )|(βθ , where 
θ, β and Ф are dependent variables (e.g. model 
parameters and entries of variance covariance 
matrix of MPs), regional parameters and catchment 
attributes respectively, H (.) is a functional relation 
between θ and β, and e is the error term) was used as 
a regionalisation schemes. Here in this study, we 
used second order polynomial form to regionalize 
the value of posterior mean; however, for the 
coefficient of variance covariance matrix, we 
employed the generalized regression approach (i.e. 
artificial neural network). Artificial neural networks 
(ANNs) are more flexible model structures that can 
easily account for non-linearities. For the 
ANN-based schemes, the popular feed forward 



neural network was used, consisting of three layers: 
the input layer, one hidden layer and output layer. 

    The regional link function estimates the 
posterior mean and variance covariance matrix from 
easily measurable catchment attributes. 
Subsequently numbers of model parameters that lie 
with in pre-specified confidence region can be 
sampled from the estimated PPD and fed into the 
model. Moreover, sampling the MPs from its 
regionalized posterior distribution will take into 
account the interdependency among MPs while 
estimating it for the target basin. 
 
4. RESULTS AND DISCUSSION  
 
   The parameter of the TOPMODEL was 
calibrated using 3 years of daily hydro- 
meteorological data utilizing MOSCEM-UA. As the 
calibrated parameters could not be uniquely 
identified, regionalisation is accomplished for all 
parameters simultaneously via a regional link 
function that links the posterior means to watershed 
characteristics. The simulated flow corresponding to 
posterior mean values explained much of the 
variability in observed runoff in basin considered 
for regionalisation.  The performances of model 
evaluated in terms of NSE for posterior mean value 
of MPs varied from 0.52 to 0.86. The predictive 
model performance corresponding to MPs estimated 
from regional link function that links posterior mean 
with CAs for all basins is shown in Fig 2. The losses 
in model performance due to the use of regionalized 
value instead of calibrated value, and the spatial 
proximity of the estimated MPs were used for the 
evaluation of the predictive performance of 
regionalisation schemes. The spatial loss in the 
model performance is 7% for basins considered for 
calibration and 12% for basins presumed ungauged. 
The standard error in the estimated parameters is 
0.009, 0.207, and 0.77 respectively for the model  
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Fig.3 Average Width of the Interval of Simulated Flow 
(AWISF) corresponding to model parameters (MPs) sampled 
from regionalized Posterior Probability Distribution (PPD) of 
MPs (Estimated) and PPD of MPs conditioned on observation 
(Calibrated).  
parameter m, To and Td. The PPD of model 
parameters provides insights into the uncertainty 
and the interaction among model parameters. The 
extent of interaction and uncertainty of MPs vary 
from basin to basin (Table 2) depending upon CAs. 
Uncertainties in the model parameter To was higher 
in larger basins, characterized with higher elevation, 
steeper slope and lower wetness index. Besides To 
and m, CV of Td was also significantly correlated 
with annual average rainfall and SD of monthly 
rainfall. The effect of model parameter uncertainty 
is approximately quantified here as the Average 
Width of the Interval of the ensemble of Simulated 
flow in % (AWISF) resulted from using numbers of 
MPs sampled (lying with in 90% confidence region) 
from the PPD of model parameters. The AWISF for 
all basins corresponding to MPs sampled from its 
PPD conditioned on observation and is referred to as 
calibrated PPD here after (see Fig. 3) is significantly 
correlated with CV of model parameters. A close 
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Fig.4 Ensemble of simulated hydrograph obtained from the MPs sampled from regionalized posterior probability distribution of 
MPs for two basins presumed ungauged (a) 395.5 (Nepal), (b) 27035 (UK) 



look into the prediction uncertainties and CAs 
reveals that higher prediction uncertainties are found 
to be associated with basins characterized with 
following attributes: Larger area, higher elevation, 
steeper slope, lowers wetness index, and higher 
variance in monthly rainfall. The prediction 
uncertainties were observed lower in French and 
English basins selected in this study compared to 
selected Nepalese and Japanese basin. 
   Once the PPD of MPs is estimated using the 
regional estimation equations, 500 various sets of 
MPs that satisfy equation 2 at 90% confidence level 
were sampled. The AWISF corresponding to the 
MPs sampled from estimated PPD was compared 
with the same obtained from MPs sampled from the 
calibrated PPD (Fig.3). The uncertainties in 
prediction measured in terms of AWISF for the MPs 
sampled from its regionalized and calibrated PPD 
were significantly similar to one another. The 
average value of AWISF obtained from the MPs 
sampled from its calibrated PPD were 
approximately 28% for basins considered for 
calibration and 25% in basin presumed ungauged, 
whereas the AWISF obtained from the MPs 
sampled from estimated PPD (referred to as 
estimated in Fig.3) were 34% and 33% in basins 
considered for calibration and validation 
respectively.  Furthermore, the ensemble of 
simulated flow obtained from MPs sampled from 
regionalized PPD of MPs for two selected basin is 
shown in Fig.4. Even though the simulated 
ensemble of flow encapsulated the simulated flow 
corresponding to posterior mean value of MPs, it 
could not encapsulate completely the observed time 
series. The observed annual average flows for most 
of the basins were within the ensemble ranges 
except for Torinkyo (Japan), K0813020 (France) 
and Y5615030 (France) where it fell marginally 
outside the ranges of simulated annual average flow. 
This is more likely due to the insufficiency of model 
structure, because, even the ensemble of simulated 
flow corresponding to MPs sampled from the 
calibrated PPD of model parameters failed to 
encapsulate the annual average flow in these three 
basins. 
 
5. CONCLUSIONS 
 
     Parameters of hydrological model can not be 
identified as a single value due to the interaction 
among model parameters. Close observation into the 
PPD of model parameters conditioned on observed 
streamflow revealed that despite using parsimonious 
model with only three parameters to be calibrated, 
the uncertainty in model prediction is apparent. 
Moreover, the variations in the PPD of model 

parameters were apparent among basins, thereby 
suggesting that the uncertainties in MPs depend on 
the physical characteristics of basins and data 
aspects. Therefore an attempt to regionalize of PPD 
of model parameters is demonstrated through the 
case study involving number of small to medium 
size basins and TOPMODEL. The prediction 
uncertainties quantified from the model parameters 
sampled from regionalized PPD closely followed 
the same quantified from the MPs sampled from its 
probability distribution conditioned on observation 
indicating the prospect of the proposed method in 
dealing with model parameter uncertainty while 
doing regionalisation. Due to the assumption of 
TOPMODEL, the functional relationship developed 
in this study can be more accurately applied to 
catchments where the assumptions of the model are 
met, primarily wet catchments that have shallow, 
homogeneous soils, small to medium size.  
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