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    In previous investigations on the Neyman-Scott clustered Poisson rectangular pulse rainfall model 
(NSM), model parameters were often estimated using rainfall moments, covariances, correlations, and dry 
moments while model performance was often assessed through the accuracy of extreme values.  No 
former contribution included extreme value information in improving the parameter search.  This was 
the motivation of the authors in finding a link between the scaling apparent in the historical rainfall 
maxima and the NSM parameters.  The normalized variance or Fano factor of the Peaks Over Threshold 
(POT) rainfall process was adopted to define this link.  In general, the results obtained from this 
approach showed acceptable performance with minor limitations.   
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1. INTRODUCTION 
  
Stochastic rainfall modeling under point 

processes1) is an essential tool used by 
hydrologists for numerous applications.  A 
thorough review of this subject was presented by 
Waymire and Gupta2, 3, 4).  A variant of this 
approach, the Neyman-Scott clustered Poisson 
point process, NSM here for brevity, was further 
developed by Rodriguez-Iturbe et al. 5) 

For flood control applications, a synthetic 
rainfall record generated from a point process 
such as the NSM should replicate the historical 
extreme values.  It would thus be advantageous 
to consider the rainfall extreme values in 
estimating the parameters of the NSM.  
However, previous investigations did not employ 
this information in the parameter search, adopting 
mainly a method of moments approach which 
incorporated sample moments and correlations 
instead5).  A means to include the maximal 
information in the method of moments parameter 
search is proposed here.   

Often, the scaling of statistics in point 
processes leads mathematically to power-law 
dependencies.  This tendency for scaling has 
been a key focus in the investigations of fractal 
stochastic point process6, 7).  In fact, studies such 

as Telesca et al.8) demonstrated scaling in rainfall 
occurrence vs. counting time in historical data.   

This study focuses on linking the scaling of 
historical extremes to the NSM parameters.  
Historical rainfall from the Automated 
Meteorological Data Acquisition System 
(AMeDAS) station at Kamishiiba in the 
southwestern island of Kyushu, Japan, was 
gathered to include mechanisms such as fronts, 
typhoons, etc.  A brief description of the NSM 
appears in Section 2 followed by a discussion on 
the Peaks Over Threshold (POT) rainfall Fano 
factor and its eventual inclusion in the NSM in 
Section 3.  Model application and verification 
appear in Section 4 followed by concluding 
remarks in Section 5.    

 
2. MODEL DESCRIPTION 
 

In the NSM, rainfall is formulated as a 
temporal cluster of rain cells which occur based 
on a Poisson process with occurrence rate λ.  
Cluster size is based on a geometric distribution 
with mean μc.  Rain cells lag cluster occurrences 
randomly following an exponential distribution 
with mean 1/β. Rain cell durations follow an 
exponential distribution as well with mean 1/η.  
Rain cell intensities are modeled by a gamma 



 

 

distribution with scale parameter θ and shape 
parameter α. The resulting rainfall is the 
superposition of these processes as shown in Fig. 
1. 
 The moment and correlation expressions for 
the aggregated rainfall point process in terms of 
the NSM parameters were derived by 
Rodriguez-Iturbe et al.9)  The succeeding 
Equations (1) – (3) list these expressions in the 
aggregated form, specific to the distribution 
parameters mentioned: β, λ, μc, η, α, and θ.    
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 ( ) hehhA ηη −+−= 11   

 ( ) hehhB ββ −+−= 11   

 ( ) ( ) ( )12
2 15.0, −−−−= khh eekhA ηη   

 ( ) ( ) ( )12
2 15.0, −−−−= khh eekhB ββ   

where: 
   n  = time interval counter 
   h  = integer specifying time step interval of 

data (1 for 1 hour, 24 for 1 day, etc.) 
  h

nY  = rainfall depth in the n-th time of interval 
h 

  ( )h
nYE   = mean rainfall depth record at  

            h-hours 
  ( )h

nYvar   = variance of rainfall record at  

            h-hours 
  ( ) ( )h

kn
h

n YY +,cor  = autocorrelation of rainfall 

record at h-hours at lag k 
 
3. THE POT RAINFALL AND NSM 

FANO FACTOR EXPONENT 
  
(1) POT Rainfall count process Ni(t) 
 Figure 2 shows the construction of the special 
count process Ni(t) to be used in determining the 
Fano factor FF(T) at an arbitrary window T. With 
rainfall pooled for each month i (i=1: January, 
i=2: February, etc.), we define the process Ui(t) 
(Fig. 2a), as the rainfall magnitude per fixed 
duration t (i.e.: t=1 hour in this study).  For the 
M months in each Ui(t), we determine the M 
monthly or block maxima Zi(t) and threshold 
value zi, the minimum of Zi(t).  We define the 
POT rainfall point process Qi(t) based on Eq. (4) 
(Fig. 2b). 
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For each rainfall occurrence in Qi(t), we define 
the binary process Bi(t) based on Eq.(5) (Fig. 2c). 
This process counts all durations of rainfall 
greater than or equal to the threshold zi and serves 
as the basis for defining the Fano factor used here: 
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 Using adjacent windows of arbitrary value T, 
we define the count process Ni(T), the sum of Bi(t) 
within each segment T (Fig. 2d).   
 
(2) Fano factor and governing relationships 
 The Fano factor FF(T) is defined as the ratio of 
variance of count Ni(T) and mean of Ni(T), or: 
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Fig. 1. Schematic drawing of the Neyman-Scott Rainfall Model. 
 



 

(a) 
 

(b) 
 

(c) (d) 

Fig. 2. Determining the Peaks Over Threshold (POT) rainfall point process and count process Ni(t).  (a) sample rainfall 
Ui(t) with previously determined threshold zi, (b) POT rainfall Ui(t)  values greater than or equal to zi (c) unit counts 
Bi(t) assigned for each rainfall occurrence, (d) count process Ni(t).   
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where: 
E = operation to obtain expected value.   
 Based on data from independent studies, 
Lowen and Teich6,7) and Telesca et al.8) proposed 
the power law relationship of Eq. (7) to describe 
the scaling that occurs over several decadal values 
of T (Fig. 3):  
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in which T0 is the basic data duration (i.e.: T0 = 1 
hour here).  Strictly speaking, the rainfall data 
used by Telesca et al. 8) were pooled yearly (zi = 0) 
instead of Qi(t).  It was assumed here that Eq. (7) 
is valid for Qi(t) throughout the set of windows T 
œ Ω = {2, 10, 20, …, 100 hours}, a conservative 
range for possible mean storm durations (Fig. 3b).   
 Alternatively, within Ω, the approximations for 
variance and mean of Ni(T) are proposed here as 
Eqs. (8) and (9) such that the Fano factor can be 
independently estimated as Eq. (10).   
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(3) NSM Fano factor exponent 

Curve fitting operations for Eqs. (8), (9), and 
Eq. (10) (i.e.: least squares fit for Ai, Bi, and Ci) 

are used to explicitly determine FFHi(TMi), the 
Fano factor of the historical Qi(t) at window T = 
mean storm duration TMi such that:  

  
1)( −≈ iB

Mi
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The relationship for the synthetic equivalent 
FFSi(TMi) can be written explicitly using Eq. (7) 
such that:   
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For our purposes, an ideal simulation should 
yield synthetic rainfall with Qi(t) such that 
historical Fano factor FFHi(TMi) and synthetic 
Fano factor FFSi(TMi) are equal, or based on Eqs. 
(10) and (12): 
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Isolating the synthetic Fano factor exponent ξSi 
leads to an expression relating properties of the 
historical Qi(t) to the unknown mean duration TMi. 
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 Actual mean storm duration TMi was estimated 
here based on Cowpertwait’s expression10) 
derived from the NSM parameters shown here as 
Eq. (15). 
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(a) 

 

(b) 

Fig. 3. (a) Scaling observed between count of spikes from a nerve fiber FF(τ) vs. counting time τ (reproduced from 
Lowen and Teich6)).  (b) Scaling in the count process Ni(t) obtained from Kamishiiba POT series Qi(t) in June. 

 
Table 1. Estimated NSM Parameters for Kamishiiba Region. 

  α β (1/hr) η (1/hr) λ (1/hr) μc θ  (mm/hr) TMi (hr) 
Jan 0.0295 0.2096 0.5000 0.0155 50.0000 2.2066 23.9182 
Feb 20.0000 0.2741 60.0000 0.0116 50.0000 0.7379 16.3187 
Mar 20.0000 0.3141 60.0000 0.0205 21.6258 1.7363 11.4900 
Apr 20.0000 0.3548 60.0000 0.0208 28.1992 1.3535 10.9542 
May 20.0000 0.2302 24.5687 0.0113 50.0000 0.6774 19.4561 
Jun 20.0000 0.1925 60.0000 0.0202 37.3840 2.9474 21.6899 
Jul 20.0000 0.0771 60.0000 0.0063 44.6919 6.3261 56.4790 
Aug 20.0000 0.0687 26.6501 0.0052 50.0000 2.4956 65.0530 
Sep 20.0000 0.0762 3.4522 0.0051 33.2218 0.4549 53.4124 
Oct 20.0000 0.1163 58.2798 0.0041 38.1742 3.1718 36.0710 
Nov 20.0000 0.1432 9.9924 0.0053 24.2467 0.3746 26.0940 
Dec 20.0000 0.1800 60.0000 0.0049 31.0726 1.4719 22.1366 

 
By substituting Eq. (15) for TMi in Eq. (14), a 
direct link between historical Qi(t) and the NSM 
parameters is established as Eq. (16).   
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 (16)  
Moreover, with the historical exponent ξHi 

estimable through curve fitting Eq. (7) to the 
historical Qi(t), it is now possible to include ξSi, 
the NSM Fano factor exponent, in the NSM 
parameter estimation.  Thus, in a limited manner 
the proposed parameter search contains 
information about historical extreme values that 
should lead to improved synthetic maxima. 
  
4. MODEL APPLICATION 
 
(1) Parameter Estimation 
 A basic scheme consisting of the existing NSM 
moments and correlation equations and the 

previously derived NSM Fano factor exponent ξSi 
is proposed here.  The objective function in the 
parameter search is given by Eq. (17). 
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where: 
NSMm = any of equations (1), (2), (3), and (16) 
HISm = equivalent historical value of moment. 
 To determine β, λ, μc, η, α, and θ, six 
expressions were required in the search: (1) 
hourly variance, (2) hourly correlation at lag 1, (3) 
12-hourly correlation at lag 1, (4) 24-hourly 
variance, (5) 24-hourly correlation at lag 1, and 
(6) hourly Fano exponent ξSi.  Eq. (18), the scale 
parameter θ in terms of the mean hourly rainfall, 
was used to limit the computational difficulty in 
numerically solving Eq. (17).  Historical hourly 
rainfall data was obtained from the AMeDAS 
station in Kamishiiba, Kyushu, Japan from 1988 
to 2002.  Estimated parameters appear in Table 
1, indicating TMi values within the range of Ω.   
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(a) 
Monthly Total Rainfall
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(b) 
Hourly Variances
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(c) 
Hourly Lag 1 Autovariances
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(d) 
Hourly Maxima
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Fig. 4. Student’s T tests for the hourly rainfall point process 
for (a) monthly totals, (b) hourly variances, (c) lag 1 
autocovariances, and (d) hourly maxima.   
  
(2) Model Performance 
 Fifteen synthetic records were generated per 
month corresponding to the 15 monthly historical 
records.  Each student’s t ordinate tS in Fig. 4a 
correspond to the ratio of the difference between 

average historical monthly total rainfall and its 
synthetic counterpart and the estimate of the 
standard error.  The values were observed to lie 
within the 5% significance value of 2.048 (for the 
sample size NHis + NSyn - 2 = 28), which indicates 
acceptable model performance.  The same is true 
for other statistics such as those shown in Figs. 
4b-c and 5.  Monthly maxima of lower rank 
were also within the 5% significance levels and 
were omitted here.   
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(b) 
24-Hourly Lag 1 Autocovariances
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(c) 
24-Hourly Maxima
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Fig. 5. Student’s T tests for the hourly rainfall point process 
for (a) 24 hourly variances, (b) lag 1 autocovariances, and 
(c) 24-hourly maxima.   
  
(3) Model Limitation 
 Figure 6 shows a sample Kolmogorov 
-Smirnov test (KS test) applied to the block 
maxima of September.  The test was formulated 
such that 2 data sets that are more consistent in 
probabilistic distribution receive a KS probability 
approaching unity11).  Based on Table 2, the 



 

 

synthetic block maxima were significantly 
different from the historical counterparts for 
several months (i.e.: values below 0.95).  During 
these months, rain cell information may by more 
relevant than storm cluster information.  
Therefore, we propose replacing the 12-hourly lag 
1 correlation with the 6-hourly lag 1 correlation to 
improve the results for these months.   
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Fig. 6. Historical vs. synthetic rainfall Kolmogorov-Smirnov 
test using 15 monthly maximum values per set.   
  
 
5. CONCLUSION 
 
 A new expression referred to here as the Fano 
factor exponent was determined for the 
Neyman-Scott Clustered Poisson Rectangular 
Rainfall Model, or NSM.  Unlike previous 
parameter search methods for the NSM, this 
version linked the model parameters to the Fano 
factor of a portion of the historical data based on 
the POT rainfall series.  Including this Fano 
factor exponent expression in the search estimated 
NSM parameters that were satisfactory for 
generating synthetic rainfall with significant mean 
total rainfall, variances, autocovariances and 
monthly maxima.  
 However, in several cases the same parameters 
generated synthetic block maxima that were 
inconsistent with the historical block maxima in 
empirical distribution.  To rectify this limitation 
during these months, rain cell based information 
should be prioritized in the parameter search.  
For this purpose, the 6-hourly lag 1 
autocorrelation should be used instead of the 
12-hourly lag 1 autocorrelation.   
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Table 2. KS Test results for Kamishiiba rainfall. 
Block Maxima KS Probability 

Month 1-Hour 24-Hour 
1 (Jan) 0.83 0.83 

2 0.98 0.98 
3 0.83 0.55 
4 0.98 0.28 
5 0.99 0.99 
6 0.98 0.99 
7 0.98 0.99 
8 0.55 0.98 
9 0.99 0.83 
10 0.99 0.99 
11 0.98 0.99 

12 (Dec) 0.98 0.99 
 

Prof. Y. Tachikawa, Kyoto Univ.). 
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