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This paper aims to raise the growing importance of predictive uncertainty evaluation in distributed 
modeling. The ideas are illustrated by applying a particular rainfall-runoff model in four catchments with 
different characteristics. Sensitivity analysis and parameter identifiability, as complimentary uncertainty 
measures allowed us to individually evaluate the suitability of model components. The Sobol 
implementation is affected by the sample size and the correlation degree among parameters, observed 
after the total sum of individual variance contributions exceeded a theoretical total variance of 1.0, in 
magnitudes that varied from 5% in dry season to 60% in wet season, turning more difficult 
straightforward interpretations. Topographic index was used to judge the distributed performance of the 
model, adequately describing patterns of total discharge in homogeneous catchments with slopes ranging 
from 10% to 30%, and failing in less homogeneous catchments with low slope landscape. 
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1. INTRODUCTION 
 

Distributed models are an accessible tool in the 
analysis of hydrological processes and response 
prediction in watersheds. Model sophistication has 
greatly improved despite the small advances in data 
measurement techniques. Consequently our poor 
understanding of driving forces remains, and 
imposes a limit on our confidence in model outputs. 
Predictive uncertainty has increased together as well 
as the necessity of their evaluation. 

Recognizing the limitations of current models and 
being aware of the necessity to give the final user a 
measure of the robustness in our predictions, the 
objective of this work is to set the importance of 
complimentary uncertainty measures in the 
evaluation of distributed models, having present the 
necessity to improve our knowledge on the model 
used and its components, increase the reliability in 
model results, and improve our knowledge on 
underlying hydrological processes. Uncertainty due 
to input data is not under the scope of this 
manuscript, therefore is not included in the analysis. 

2. METHODOLOGY 
 

(1) Study area and distributed model 
a) Study area and data 

Two systems with different topographic 
characteristics are studied: Natori basin (center of 
Miyagi Prefecture, northeastern Japan), and Caine 
basin (center of Bolivia). Natori basin (1015km2) 
has mountainous landscape, with altitudes that vary 
from 0m to 1470m relative to mean sea level (msl), 
and land use characterized by urban areas, forests 
and crop fields (according to the Geographical 
Survey Institute, Japan). Caine River basin 
(10214km2 at Molineros stream gauge station) is a 
semiarid region where evapotranspiration rate is 
higher than precipitation. Characteristics in Caine 
are heterogeneous, altitudes vary from 2500m to 
2700m (relative to msl), and land use is agricultural 
with urban and industrial interferences. Two Caine 
sub basins are also considered: Huarmi (1784km2), a 
valley with intermediate and fine granulometry 
(gravel, sand, lime and clay), and Taquiña River 
(19km2), a mountainous steep catchment. Respect to 



 

hydrometeorological data, hourly precipitation 
records in Natori basin are taken from 3 stations of 
the Automated Meteorological Data Acquisition 
System (AMeDAS), daily discharge records are 
taken from Yokata gauging station, and 
evapotranspiration is estimated from Normalized 
Difference Vegetation Indices derived from remote 
sensing data1). In Caine basin precipitation is taken 
from 27 stations of the National Meteorological and 
Hydrological Service (11 on daily basis and 16 with 
monthly resolution), and evapotranspiration is 
calculated using Penman Method with data from 9 
stations2). Daily records at Molineros are used for 
analysis in Caine, meanwhile mean monthly 
discharge generated with a lumped model2) is 
considered for Huarmi and Taquiña for all the 
evaluation period. In all cases, areal precipitation 
and areal evapotranspiration are estimated using the 
inverse distance method. Respect to topographic 
data, rectangular grids of elevation are considered at 
250m resolution in Natori, and 250m to 1000m 
resolutions in Caine and sub basins. To simplify the 
analysis, the evaluation in Natori is carried for the 
period 1999-2000, and for the period 1974-1975 in 
Caine, Huarmi and Taquiña. 
b) Distributed model 

To illustrate the ideas, a distributed model 
structured with a subsurface and a groundwater 
reservoir3) is used. There, overland flow routing is 
described by the kinematic wave equation, derived 
from the continuity equation as follows 
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where A is flow cross-sectional area, t time, Q 
discharge, x distance along the longitudinal axis of 
the watercourse, q lateral inflow or outflow per 
lineal distance along the watercourse, r rainfall rate, 
E evapotranspiration rate, B surface flow width, and 
h surface flow depth. 

An infiltration model estimates abstractions due 
to infiltration. There, soil saturation (Ss) and initial 
infiltration (Fo) are assumed linearly varied as 
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where Smax,min, Fmax,min are maximum and minimum 
conditions of Ss and Fo respectively, dayrate are the 
assumed days of rain to soil saturation, and dr are 
days of rain in the period. Later, the actual 
infiltration F that is subtracted to h, and recharges 
groundwater storage (when the soil has not reached 
saturation conditions Smax) is estimated as 
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Storage depth S is estimated with a storage 
function controlled by parameters K (dimensional) 
and m (dimensionless) as 
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where qs is runoff depth, and re is effective rainfall. 
In the model, above expression is adapted to 
account groundwater storage as 
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where qin and qout are now referred to groundwater.
Overland flow is routed from cell to cell by flow 

direction vectors towards an explicitly defined river 
network. Once there, routing through main channels 
is described by a dynamic wave model that 
considers St. Venant equations of mass (Eq.1), and 
momentum conservation written as follows: 
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where g is gravity acceleration, H water level, v 
flow velocity, and n Manning’s friction factor. Eq.7 
is hence used to calculate water depth and velocity. 

 
(2) Sensitivity analysis 

Sensitivity analysis is commonly considered to 
identify sensitive factors. Methods are selected 
according to the problem addressed and the 
characteristics of the model used. One at a time 
(OAT) experiments4) are screening tests, commonly 
used to evaluate feasible model parameter sets that 
may adequately describe a system. In OAT tests 
parameter values are varied one by one, within 
ranges and rates decided by modelers’ experience, 
until is found a desired agreement between 
observations and calculations. When looking for 
more rigorous methods to quantitatively perform the 
analysis, variance based methods4) are attractive, 
since can be used to estimate the variance 
contribution of model parameters to model output. 

 
(3) Sensitivity indices 

For uncorrelated factors, variance based 
techniques estimate the contributed variance from x 
model factors to model output Y=f(xi,xj,..,xk). To 
calculate sensitivity indices, the method establishes 
that the variance V of the model output can be 
decomposed into summands of decreasing 
dimensions as 
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and E(Y⏐xi) is the expectation of Y conditional on xi. 
The decomposition contains k terms of first order, 

2
)1( −kk  terms of second order and further until the 

last term. Each term can be computed by Monte 
Carlo integrations,and the results can be finally used 
to define sensitivity indices of different orders as 

Si=Vi /V               (10) 
Sij=Vij /V               (11)    

S
    

Ti=1-V-i /V              (12) 
where Si is the first order index denoting the main 
effect of parameter i, Sij the second order index 
denoting the effect of the interaction of parameters i 
and j, V-i denotes the influence of all the parameters 
except i, and STi is the total index that represents the 
main effect of parameter i as well as its interactions. 
STi is useful in the identification of input factors (i.e. 
model parameters) non-influential in the output 
variance. Monte Carlo-based Sobol’ method was 
used to estimate the indices, and numerical schemes 
are detailed in the works of Saltelli4) and Tang5). 

 
(4) Objective functions 

The predictive potential of a model is usually 
evaluated using statistical measures. Current models 
are not capable to describe all aspects of the 
hydrograph with a single parameter set6), therefore 
is common to consider many objective functions 
(OF). The measures used here are based on a 
normalized form of squared residuals (differences 
between observed Oi and computed data Ci) and 
ordinary error measures. The former emphasize 
performance during high flows since are sensitive to 
means and variances, meanwhile the latter evaluate 
concordance between observed and simulated time 
series. Nash-Sutcliffe dimensionless Coefficient of 
Efficiency CE (Eq.13) varies from minus infinity for 
poor model performance, to 1.0 for good model 
performance; zero would indicate that the observed 
mean Om is as good predictor as the model, while 
negative values would mean the opposite7). The 
Root Mean Square Error RMSE (Eq.14) follows the 
same tendency, with the advantage that has the same 
units as the variable analyzed. For volumetric 
discharge evaluation, the dimensionless Relative 
Volumetric Error RVE (Eq.15) is more suitable. 
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(5) Parameter identifiability 
Parameter identifiability is usually analyzed 

through “OF vs parameter value” plots, and can be 
used to verify the suitability of a model component 
to describe a process in a system7). This is 
sometimes difficult to evaluate when parameters 
highly sensitive seem not recognizable.  

It has been observed that identifiability can be 
affected by parameter interdependences, their 
temporal and spatial variations, lack of information 
in the data used, or the inadequacy of the OF to 
represent their impact in model performance, 
therefore its evaluation has been suggested to be 
done during wet periods, where may occur stronger 
relationships between model response and 
hydroclimatic conditions 8). 

 
(6) Prediction in ungauged locations 

Continuous observations of hydrologic variables 
are fundamental for reliable model outputs. The 
problem arises when we are required to evaluate the 
model performance at ungauged sites. Prediction in 
Ungauged Basins PUB is an initiative of the 
International Association of Hydrological Sciences 
IAHS, and is an issue of current concern.  

As an alternative to statistical methods requiring 
a high number of gauged locations, it is important to 
recognize the role of landscape properties in the 
spatial variability of hydrological processes. Those 
properties have been used by modelers, among 
which Beven’s TOPMODEL (Topography based 
Hydrological Model) is one of the most cited in the 
hydrological literature. TOPMODEL’s simplicity 
comes from the use of the topographic index κ= 
ln(a/tanβ), where a is the area draining to a given 
cell and tanβ is the slope angle. κ is a similarity 
index indicating that all cells with the same index 
value would have similar hydrological response. 
High values of κ will be caused by long slopes, 
upslope contour convergence or low slope angles 
that indicate saturation potential. Distributed 
patterns of those attributes can be compared against 
the outputs of a model to judge their distributed 
performance, helping us to improve our knowledge 
referred to the nature of process occurrence. The 
idea is simple and can help us to quantitatively 
analyze our results, although will not be applicable 
in dry regions where saturation is unlikely to occur. 

 
3. RESULTS AND DISCUSSION 
 
(1) Preliminary computational experiments 

OAT experiments were used to estimate model 
sensitivity to variations in parameter values (i.e. 
model components). An initial warming-up 
computation determined initial conditions, and 9 

 



 

model parameters (i.e. 3 model components) were 
varied on ±10% increments within assumed ranges. 
In Natori basin, it was assumed that the best model 
performance would be accomplished with a 250m 
grid resolution (the finest available), and 10s for 
calculation time step. Performance was evaluated 
based on CE, RVE and RMSE measures (Table 1), 
and parameters of the storage component (K, m) 
were the most sensitive. Infiltration component (i.e. 
parameters Smax, Smin, fmax, fmin, dayrate) was 
identified as insensitive. 

Monte Carlo-based methods demand high 
computational effort in distributed models, then 
towards future steps was thought necessary to find 
the coarsest acceptable resolution for each basin. As 
a result, computational experiments continued in 
Natori for grid resolutions of 500m and 1000m. 
Later, additional empirical reasons (e.g. largest grid 
size to represent desired certain features) pointed to 
the 500m grid resolution as the most adequate. 

Following the process and considerations above, 
model performance was evaluated on 3 systems 
arbitrarily classified: a large watershed (Caine, with 
channel runoff assumed as dominant), a medium 
size watershed (Huarmi, with predominant flat 
slopes, and groundwater processes assumed as 
dominant), and a small mountainous system 
(Taquiña, assumed dominated by overland flow 
processes). Model parameters spatially distributed 
within three ranges of slopes were considered in 
OAT tests with grid resolutions of 250m, 500m, 
1000m, 2000m, 4000m and 8000m. Different 
performances were reached (Table 1), and the 
storage module was the most sensitive resembling 
the results in Natori despite the differences in 
geography. Finally, the coarsest acceptable grid 
resolutions selected were 8000m for Caine, 1000m 
for Huarmi, and 250m for Taquiña. 

OAT tests are simple and the computational cost 
is low if the experiments are adequately planned. 

The main inconvenient might be that they may only 
evaluate a region within the universe of behavioral 
parameter sets; SA is then considered. 
 
(2) Sensitivity indices 

Sobol’ method was used to estimate uncertainty 
contribution from input factors, in this work 
considered only as the model parameters, leaving 
input parameters out of the analysis. Sobol sampling 
generated 286 sample sets of 9 model parameters 
uniformly distributed (i.e. 3 model components). 
The hydrological model was run for the generated 
sample sets, and the outputs (total discharge) are 
used by Sobol’ scheme to construct time series of 
sensitivity indices. Monte Carlo demanded high 
computational effort, and the degree of parameter 
correlations affected the implementation of the 
method here considered. The sum of variance 
contributions overestimated the total theoretical 
variance of 1.0 in magnitudes varying from time 
step to time step. In dry conditions overestimation 
was found to be between 5% to 25% in the worst 
case (June 1st), implying low predictive uncertainty. 
As expected, overestimation in wet conditions was 
higher (see Figure 2), with maximum values before 
hydrograph rise (33% of overestimation), and 
hydrograph recession (48% of overestimation), 
meanwhile low overestimation was observed during 
peak occurrence (22%, 0% and 10% respectively). 

Hydrological processes vary in time, for instance 
time scale of the analysis might be defined by such 
aspect. Monthly time series (e.g. Fig.3) were easier 
to evaluate than daily ones (e.g. Fig.2), and can still 
be meaningful. Storage processes (i.e. slow time of 
occurrence) have permanent effect even during dry 
periods, and could be used on system 
characterization. Channel flow has faster response, 
therefore its effect in total variance vary according 
to soil moisture conditions, being important in 
catchments with well defined channel configuration. 
The latter was observed in all systems except on the 
fast-response mountainous catchment (not shown 
here), where storage and infiltration dominated 
system response. 

Table 1. OAT experiments: Model performance evaluation (the
coarsest resolutions empirically selected are marked).

250 500 1000 2000 4000 8000
Caine CE --- --- 0.65 0.84 0.84 0.91

RVE --- --- 0.42 0.35 0.29 0.03
RMSE (m3/s) --- --- 32.66 22.53 22.36 16.43

Huarmi CE 0.45 0.49 0.50 0.34 0.58 ---
RVE -0.04 0.17 0.19 -0.22 0.05 ---
RMSE (m3/s) 10.00 9.63 9.51 10.90 8.71 ---

TaquiñaCE 0.85 --- --- --- --- ---
RVE 0.09 --- --- --- --- ---
RMSE (m3/s) 0.10 --- --- --- --- ---

Natori CE 0.59 0.85 0.60 --- --- ---
RVE 0.10 0.08 0.55 --- --- ---
RMSE (m3/s) 46.47 27.61 45.61 --- --- ---

Grid size (m)

Sensitivity indices were used to evaluate model 
components and to identify uncertainty sources, 
consequently improving our knowledge about 
underlying hydrological processes. The application 
of the methodology does not seem restricted by 
geographic conditions, and the quantitative 
properties of the method should be recognized. 
Finally, stronger relationships between model 
response and hydroclimatic conditions can be 
notorious during events occurrence9), which as 
found here, can also increase predictive uncertainty 
and demand major attention. 

 



 

(3) Parameter identifiability 
Identifiability plots are complimentary measures 

that can be used to indicate model suitability to 
represent the response of a given system9). A 
parameter would be identifiable when different 
values drive different model responses, and 
describing recognizable trends9).  

The structure of a model will not be suitable to 
all kind of topographic configurations; uncertainty 
will also vary. Catchments with homogeneous 
topography and gentle slopes can present higher 
number of identifiable components (e.g. Fig.4) than 
catchments with steeper slopes and more 
heterogeneous characteristics (e.g. Fig.5). Storage 
component was the most sensitive and the most 
identifiable, hence can be used to describe variations 
in catchment state. Parameter m varied from 1.8 to 
2.5 in Natori, implying more excess runoff stored 
than in the steep mountainous catchment where m 
varied from 2.5 to 5.0. In catchments where model 
performance was poor (Huarmi basin) identifiability 
plots did not carry much information but showing 
that particular model components are associated to 
high predictive uncertainty. 

(4) Distributed performance of the model 
Models conceptually based on the role played by 

landscape properties in catchment response can be 
useful to evaluate the distributed performance of a 
model. Topographic index is an interpretation of the 
reality that indicates potential to saturation (i.e. 
runoff occurrence) on locations with high values. It 
can be useful although may not hold for all cases. In 
this study, its distributed patterns were compared 
against those of total discharge during representative 
time steps, in order to qualitatively determine the 
distributed performance of a model. As a result, two 
catchments presented discharge patterns that seemed 
adequately described by the index (i.e. recognizable 
relationship): a middle-size homogeneous catchment 
(Fig.6, upper left), with gentle slope and discharges 
ranging from 100l/s to 900l/s, and by indices from 1 
to 7 respectively, and a steep catchment with 
average slope of 30% (Fig.6, upper right), 
discharges in the range 5l/s to 75l/s, and described 
by indices from 0.5 to 6.5. On the other hand, 
discharge patterns from a middle-size heterogeneous 
catchment with predominant flat slopes (Fig.6, 
lower left), and from a large heterogeneous 
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catchment (Fig.6, lower right), were not adequately 
described since low slope angles caused high 
indices that blurred recognizable relationships. In 
the latter case, field data becomes fundamental for 
an adequate representation of discharge patterns. 

 
4. CONCLUSIONS 
 

The objective of the manuscript was to present 
the use of complimentary uncertainty measures that 
would help to improve the reliability on distributed 
model predictions, and determine the suitability of 
model structure to describe a given catchment. OAT 
experiments were first used to evaluate an initial 
behavioral range of model parameters, and later 
used to aid the evaluation of the most adequate grid 
scale to carry model runs. Finally, three uncertainty 
measures were considered: sensitivity indices, 
identifiability measures and landscape properties. 

Sobol indices can be used on any mathematical 
model, although the high computational cost and the 
degree of correlation among parameters can 
complicate straightforward interpretations. In this 
study both aspects have influenced the temporal 
behavior of the indices, since the total theoretical 
variance was overestimated in magnitudes that 
varied from 5% in dry conditions, to 65% in wet 
conditions (when the complexity of processes 
interaction increase). On the other hand, the 
importance of the temporal evolution of sensitivity 
indices should be also recognized in terms of the 
inherent dynamic properties of a system. 

Identifiability plots, although restricted to gauged 
locations, were used as complimentary measures 
that allowed us to evaluate the characteristics of the 
response surface, and the probable behavioral space. 
Later, distributed performance is also an uncertain 
aspect to evaluate, and was covered here by 
comparing distributed patterns of the topographic 
index and the total discharge calculated. The 
approach was found adequate on homogeneous 
catchments with indices in the range 0.1 to 6.5 and 
average slope from 10% to 30%, and inadequate in 
heterogeneous systems with preponderance of low 
slope angles, demonstrated to be highly uncertain, 
hence demanding more data for a reliable 
representation. Uncertainty due to input data will 
affect the results presented, and are out of the scope 
of this manuscript; in any case, to analyze both 
separately (model structure and input data) is though 
to be adequate. Finally, both sensitivity and 
identifiability measures can be highly influenced by 
the sample space size considered, and their 
application in distributed models still requires 
further research.  
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