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   This paper investigates the development and application of a daily optimization (DO) model to the 
short-term operation of the water supply system of Matsuyama, Japan. The main objective of the procedure 
is to seek the best allocations of water that minimizes the squared deviations between releases and target 
demands. The daily precipitation for one week ahead is assumed to be deterministic since meteorological 
short-range forecasts are generally available. The groundwater balance is modeled by Multiple Linear 
Regression (MLR) and short-term predictions of reservoir inflows are obtained based on the daily 
precipitations by means of Artificial Neural Networks (ANNs). System operations using fictitious 
simulation and the DO model under perfect short-term forecast of inflows are used for comparison. The 
results of the DO procedure using ANN-based inflow predictions are shown to be equivalent to those 
obtained by DO under perfect short-term forecast of inflows and superior to the ones found by simulation.    
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1. INTRODUCTION 
 
   Many studies have been carried out in order to 
produce measures capable of ensuring the 
sustainable use of the water resources. Optimization 
models are techniques commonly used for providing 
a better planning and operation of water supply 
systems1), 2), 3), 4), 5). However, most of the real-time 
procedures consider only either the operation of 
surface water reservoirs or groundwater systems. The 
conjunctive use of surface water and groundwater is 
very important for cities which depend on these two 
types of resources and therefore, it is very important 
to find better strategies for their optimal exploitation 

2), 3). Matsuyama, located in southwestern part of 
Japan, is one of these cities and many researches 
have been carried out in a tentative of improving and 
finding adequate policies for its water resource 
system 6), 7). 
   This paper deals with the utilization of a daily 
quadratic optimization (DO) model for the conjugate 

real-time operation of Ishitegawa Dam reservoir and 
Matsuyama groundwater system. For that, it was 
assumed that daily precipitations for one week ahead 
are accurately forecasted. 
 
2. STUDY SYSTEM 
 
   Matsuyama city water system is composed of a 
multipurpose reservoir and a set of unconfined wells 
located around Shigenobu River, which is the main 
river of its hydrographic basin. The groundwater of 
the Shigenobu River together with Ishitegawa Dam 
reservoir is used for supplying all the water needs of 
this city. Ishitegawa Dam reservoir is also used for 
flood control in the region. The water use of 
Matsuyama is detailed in Table 1. 
   Shigenobu River Basin has an area of 
approximately 445km², an annual precipitation of 
around 1,250mm and about half a million residents. 
The layout and location of the water supply system of 
Matsuyama city is shown in Fig.1. 



 

 

 
3. DAILY OPTIMIZATION (DO) MODEL 
 
   It is assumed that the main objective of the 
operation is to find the allocations of water that best 
satisfy the respective demands without 
compromising the system. Another aim is to keep the 
storage high whenever possible, i.e., every time there 
exists alternative optimal solutions for the releases. 
The objective function of the optimization problem is 
thus written as follows: 
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where t is the time index; N is the operating horizon; 
Def(t) is the deficit during period t; D(t) is the 
demand during period t; S(t) is the reservoir storage 
at the end of time interval t; and ST(t) is the target 
reservoir storage at the end of period t. 
   The deficit at each period is defined by the 
following equation: 
 
 ttRdtRwtDtDef ∀−−= );()()()(  (2) 
 
where Rd(t) and Rw(t) are the optimal releases from 
the dam and wells during period t, respectively.    
   Reservoir release and storage at each period are 
related to inflow and spill through the continuity 
equation: 

 NttSptRdtItStS ,,1);()()()1()( K=−−+−= (3) 
 
in which S(0) is the initial reservoir storage; I(t) is the 
inflow during time t; and Sp(t) is the spill that 
eventually might occur during time t. 
   The operation of the set of 26 supply wells is 
monitored through the Minamitakai Observation 
Well, whose level represents the groundwater level 
of Shigenobu River’s aquifer. The representative 
well level is defined by Multiple Linear Regression 
(MLR) as follows: 
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where H is the water elevation in the wells (m); P is 
the daily precipitation (m); Rw is the daily release 
from wells (m³/s); PP is the number of previous days 
without precipitation (days) and α, β, γ, δ and θ are 
the model parameters to be estimated by MLR. 
   The definition of the target storage ST(t) is made by 
determining a possible quantity of available water 
AW(t) in the reservoir for 30 days ahead of time step 
t. The calculation of AW is done by the following 
equations: 
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where Sdead is the reservoir dead storage; i is the time 
index for days ahead of period t; ADI(t+i) is the 
average of historical daily inflows for time step t+i; 
and TI(t) is the summation of the averages of 
historical daily inflows to the reservoir for 30 days 
ahead of period t. It is important to observe that the 
average for each day of the year from the historical 
data of inflows is used and therefore, there is no need 
for 30-days-ahead predictions of inflows. 
   Since in Matsuyama city the water released from 
the reservoir has lower cost compared to ground 
water, one objective is to allow the reservoir to 
release its maximum daily capacity when there is 
plenty of water and start reservoir water supply 
hedging when the possible available water for 
30-days-ahead is not enough for allowing its 
maximum daily capacity use. The first hedging rule 
tries to bring the reservoir storage as close as possible 
to a level capable of sustaining the maximum daily 
release from the reservoir. The second reservoir 
hedging rule starts when the available water is not 
enough to attend the total demand for 30-days-ahead, 
i.e., when the total demand minus the maximum 
release from the wells for 30-days-ahead cannot be 
supplied by the reservoir. In this case, the hedging 

Table 1 Water use in Matsuyama. 
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Fig.1 Location and layout of the system. 

 



 

 

policy tries to keep the reservoir level as close as 
possible to a level capable of keeping at least a 
minimum release from the reservoir to attend the 
total demand. In a tentative of implementing these 
rules, the target storage ST(t) is defined as follows: 
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where Rdmax(t) is the maximum release from the 
reservoir at time t; Rwmax(t) is the maximum release 
from the set of wells at time t; TRdmax(t) is the 
summation of maximum daily reservoir releases for 
30 days ahead of period t; TRdmin(t) is the summation 
of minimum necessary daily reservoir releases to 
attend the total demand for 30 days ahead of period t; 
   The physical limitations of the system define 
intervals which deficit, reservoir and wells releases, 
reservoir storage, well level and spill must belong to: 
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where Smax(t) is the maximum storage at time step t; 
and Hmin is the minimum allowed level for 
withdrawing water from the set of wells. 
   The model is solved by Quadratic Programming 
(QP) through the use of the MATLAB Optimization 
Toolbox8). 
 
4. ANN-BASED PREDICTION MODEL 
 
   An Artificial Neural Network (ANN) model 
trained by the back-propagation algorithm is 
employed for estimating up to seven-day-ahead 
reservoir inflows. The methodology is applied to 
Ishitegawa Dam, which belongs to the water supply 
system of Matsuyama city, Japan. 

(1) Architecture and topology 
   The architecture of the network is formed by the 
input layer, one hidden layer and the output layer. 
The input layer is composed of eight neurons, which 
are the current reservoir inflow I(t), and the 
forecasted precipitation for seven days ahead: 
P(t+1), P(t+2), P(t+3), P(t+4), P(t+5), P(t+6), 
P(t+7). The number of neurons in the hidden layer is 
determined based on a trial-error procedure. The best 
training results were achieved with three neurons in 
the hidden layer. The inflows for the next seven days 
ahead, I(t+1), I(t+2), I (t+3), I (t+4), I (t+5), I (t+6), 
I (t+7), are the neurons of the output layer. In this 
study the network topology is constrained to be 
feed-forward, i.e., the connections are allowed from 
the input layer to the hidden layer and from the 
hidden layer to the output layer. The network 
topology of this study is illustrated in Fig.2. 
 
(2) Activation functions 
   The tan-sigmoid function is chosen as the 
activation function for the hidden neurons. For the 
output layer neuron, a linear activation function is 
used. 
  
(3) Training process 
   The original data (input and desired outputs) are 
conveniently scaled before the training in order to 
improve the efficiency of the ANN. The scaling 
approach consists of normalizing the inputs and 
targets so that they will have a mean and standard 
deviation equal to zero and one, respectively9). The 
training is performed by the back-propagation 
algorithm which has been successfully applied to 
water resources systems10). In this approach, the 
Levenberg-Marquardt (LM) algorithm is used for the 
back-propagation training. A detailed explanation of 
the LM algorithm is provided by Hagan & Menhaj11). 
The network training is supervised, i.e., the series of 
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Fig.2 Topology of the ANN-based prediction model. 



 

 

weights between the neurons and the bias are 
adjusted through the iterations (epochs) in order to fit 
the series of inputs to another series of known 
outputs. The training also occurs in the batch mode. 
In this mode, the weights and biases are updated only 
after the entire training set has been applied to the 
network. In order to improve generalization, the 
training is stopped by the Early Stopping Method9). 
This technique avoids a problem called overfitting 
that occurs during the neural network training. The 
network seems to be very well trained by showing 
very small errors from the training data set, but when 
new inputs are used the error is large. 
 
5. APPLICATION AND RESULTS 
  
(1) Groundwater balance 
   The estimation of the groundwater level, which is 
measured from the surface of Minamitakai 
Observation Well, was fitted to the historical data by 
the MLR model as presented in Eq.(4). Table 2 
shows the values of the calibrated parameters. Five 
years of daily data (1997-2001) were used for the 
calibration and two years (2002 and 2003) for test. 
The results from calibration and test are shown in 
Figs 3 and 4, respectively. The high correlation (r) 
and low root mean square error (RMSE) between 
observed and estimated groundwater levels indicate 
that the calibrated MLR model is very reliable and 
thus can be used for the groundwater balance needed 
by the DO model. Salas12) provides the equations to 
calculate the correlation and the root mean square 
error. The best fit between observed and calculated 
values, which is unlikely to happen, would have r = 1 
and RMSE = 0.    
 
(2) ANN-based prediction model 
   The historical data utilized in the procedure contain 
13 years of daily data (1991 – 2003). The ANN 
model was calibrated using the data from the year 
1993 to 2003 and the test was carried out over the 
years 1991 and 1992. The model calibration used the 
Early Stopping Method, and therefore the calibration 
data set was divided in two subsets: the first was used 
for the ANN model training (1993-2001), and the 
second for validation (2002-2003) to specify when to 
stop the network training. The comparison between 
six-day-ahead observed and predicted inflows is 

displayed in Fig.5. The results were shown to be very 
accurate and, therefore, this model was chosen to 
predict the short-term inflows needed for the 
application of the DO procedure to the water supply 
system of Matsuyama. 
 

Table 2  Calibrated parameters of the MLR model. 
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Fig.3 Comparison between observed and estimated groundwater 

levels for the calibration data set. 
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Fig.4 Comparison between observed and estimated groundwater 

levels for the test data set. 
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Fig.5 Comparison between 6-day-ahead observed and predicted 

inflows for the test data set. 



 

 

(3) Daily optimization model 
   The DO procedure was applied to the real-time 
operation of the water resources system that supplies 
the city of Matsuyama, located in Ehime Prefecture, 
Japan. The maximum reservoir storage (Smax) is 
8,500,000m³ during the rainy season and 
12,800,000m³ for other periods. The minimum 
groundwater level for water withdrawal was assumed 
to be only -3m, different from the actual minimum 
level of -5m, because it was desired to observe many 
shortage situations and then compare how they are 
handled by the models. The DO procedure was 
applied to the data of the year 1991. The initial 
reservoir storage and representative well level were 
set to Smax and -2.14m (historical value), respectively. 
   The DO model was run under an operating horizon 
N of seven days. The values of inflows for seven days 
counting from the current day were obtained through 
the ANN-based prediction model considering the 
precipitations of seven days ahead. These 
precipitations were assumed as deterministic values 
since meteorological short-range forecasts are 
generally available. The representative well level is 
updated through the groundwater balance equation 

defined by Eq.(4). The procedure is run and the 
optimal releases for the seven days are found. 
Nevertheless, only the allocations for the current day 
are used. The procedure is repeated for the next day 
and so forth until the final day of operation (end of 
the year) is reached. 
   Results obtained from the utilization of the DO 
model assuming the operating horizon of inflows as 
perfect forecasts were used for comparison. The 
operation of the system using the short-term 
perfect-forecast situation gives us the “ideal” 
releases that should be employed for the operating 
horizon since it has knowledge of all future inflow 
values. For comparison purposes, a fictitious 
simulation where all the demands should be met 
whenever possible (prioritizing the use of the 
reservoir storage), was also considered and compared 
with the DO optimal operations. 
   The results displayed in Fig.6 show how the 
allocations from the water supply system try to meet 
the target demands for the period between September 
and December of 1991. Comparing the results from 
the DO under perfect short-term forecast of inflows 
with those from the fictitious simulation, it can be 
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Fig.6 Results for the period between September 1st and December 31st of 1991. 
 



 

 

seen that the optimization model tries to mitigate the 
great concentrated deficits that happen with the 
simulation by decreasing the releases prior to 
shortages periods so that the overall deficit also 
diminishes. The results of the DO procedure using 
ANN-based inflow predictions try to allocate water 
in a way very similar to the DO under the perfect 
forecast of inflows. This information indicates that 
the release policies obtained by DO with ANN-based 
predicted inflows were quite satisfactory given the 
fact that they have information only on the 
precipitation forecasts, whereas the DO under the 
perfect forecast has knowledge of inflows for the 
operating horizon and thus better means to define 
superior policies. 
   The summation of the daily squared deviations 
between releases and target demands were computed 
from January to December of 1991. These values are 
presented in Table 3. The squared deviation results 
showed that, as well as seen in Fig.6, DO using 
ANN-based predicted inflows produced results 
similar to the DO under perfect short-term forecast of 
inflows and superior policies if compared to the 
fictitious simulation. 
 
6. CONCLUSIONS 
 
    A quadratic optimization problem was applied to 
the short-term operation of Ishitegawa Dam reservoir 
and a set of groundwater wells in Matsuyama, 
Ehime. The groundwater balance, which was 
modeled by a MLR model, and the short-term 
ANN-based predictions of reservoir inflows were 
obtained based on the short-range forecast of daily 
precipitations. 
   Analysis of the MLR and ANN models showed that 
they were very trustworthy, and consequently could 
produce consistent data for the application of the DO 
procedure to the water supply system of Matsuyama. 
   The results indicate that the DO model using the 

ANN-based predicted inflows found more 
reasonable operating policies than fictitious 
simulation that tried to meet all the demands without 
taking the future situation into account. As 
conclusion, this suggests that the DO model using 
short-term ANN-based predicted inflows may be 
useful for the sustainable operation of water supply 
systems with conjunctive use of surface water and 
groundwater. 
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Table 3 Summation of the squared deviations between releases 
and target demands for all procedures. 
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