日本近海でのCO₂海洋隔離における 濃度予測及び生物影響

A CONCENTRATION PREDICTION IN CO₂ OCEAN ISOLATION IN THE JAPANISE SEA NEAR THE SHORE AND INFLUENCE TO MARINE ANIMALS

中村倫明¹・和田明²・長谷川一幸³・落合実⁴ Tomoaki NAKAMURA, Akira WADA, Kazuyuki HASEGAWA and Minoru OCHIAI

¹学生会員 日本大学大学院 総合科学研究科(〒102-8251 東京都千代田区五番町12番5号)
 ²正会員 工博 日本大学大学院 総合科学研究科(〒102-0073 東京都千代田区九段北4-2-1)
 ³正会員 博士(工学) 財団法人海洋生物環境研究所(〒299-5105 千葉県夷隅郡御宿町岩和田300)
 ⁴正会員 博士(工学) 日本大学 生産工学部(〒275-8575 千葉県習志野市泉町1-2-1)

For the assessment of the long-term consequences of the carbon dioxide ocean sequestration, the CO_2 injection into the middle depth parts of the Pacific Ocean was simulated. The model consists of the essential processes, such as the ocean circulation developed by us, the solubility pump (CO_2 exchange flux across the atmosphere-ocean interface), the biological pump. The present major modifications from our previous model include the inclusion of the biological pump. This improvement enabled us to simulate the future CO_2 fate in the long-term using the more realistic model. Using this model, the CO_2 injection into the middle part of the ocean was simulated assuming the amount of CO_2 sequestered. Following results were obtained:(1) the present study could reveal the effectiveness of the direct ocean CO_2 sequestration, in relation to both selecting appropriate dumping depth, and evaluating the effect of CO_2 concentration to marine animals. (2) According to our model with a coarse grid mesh (2 ° × 2 °), there would be less influence to the marine fish such as *Pagrus* major and *Sillago* japonica.

Key Words : CO_2 sequestration, air-sea CO_2 flux, biological pump, influence to marine fish

1.はじめに

経済発展と共に年々増加している化石燃料の大量消費 は、地球温暖化問題の主要な原因と考えられ、それに伴 う00₂排出量の増加に懸念が集まっている.産業革命以 前、約280ppmであった大気中のCO₂濃度は2000年には 368ppmに達したが、産業部門での技術向上や個人の意識 向上の成果により、日本では2004年度CO₂排出量が減少 傾向を示した¹⁾.しかしながら、2005年には京都議定書 が発効となり、それにより定められたCO₂削減目標達成 期間(2008年~2012年)が切迫した現在でも削減達成は難 しい状況である.そうした中で、化石燃料の消費に伴う CO₂の濃度上昇を抑制する対策、研究が各分野でなされ ている.特にCO₂を回収し隔離する技術開発は早くから 考えられていた手法である²⁾.そこで本研究では、現在 も大量に排出され続けるCO₂量にも対応が可能であり、 長期的な隔離を行う事が出来ると考えられているCO₂海 洋隔離に着目した.現行の002海洋隔離の研究では,大 規模領域(地球規模)のものが多く,002の投入地点を特 定しているもの³¹(粒子追跡)や,人為起源による大気の 002上昇が海洋の002との交換によって生じると仮定した もの⁴¹がある.本研究では,実際に002海洋隔離を行うこ とを前提に,放出点を日本近海とし放出した002の濃度 分布を,数値シミュレーションを行うことによって予測 した.

また,本研究では海洋隔離の可能性を評価する為に, 生物影響を考慮することの出来るモデルの構築を目的とした.その先がけとして,太平洋の流れの算出,ハワイ コナ市沖による⁽⁰⁾2海洋隔離シミュレーションを現在ま でに行ってきたが⁵⁾,本研究では新たに⁽⁰⁾2濃度が上昇 し続ける大気と,それに接する海洋との炭素交換,さら には植物プランクトン等の働きを考慮した生物による炭 素の鉛直方向での循環(生物ポンプ)をモデルに取り込む ことにより,モデル計算精度を向上させた.

2.解析モデルの概要

(1) 海洋大循環モデル

本研究で使用した海洋大循環モデルは、長谷川ら⁵⁾⁶⁾⁷⁾ が再現してきたモデルを用いている、海洋の流速成分は Primitiveな方程式系を使用している、計算海域は太平 洋全域とし、水平方向の計算メッシュは経緯度2×2度 (110E~70W,60N~74S,Cgrid)である、鉛直方向の計 算メッシュは、第1層:0~20m,第2層:20~50m,第3 層:50~100m,第4層:100~200m,第5層:200~400m, 第6層:400~800m,第7層:800~1500m,第8層:1500~ 2500m,第9層:2500~3500m,第10層:3500~4500m,第 11層:4500~5500m,011層に分割している、また、基 礎方程式の座標系は水平方向に球面座標を用いている、 また、ポテンシャル水温の保存式、塩分の保存式には、 Sarmiento and Bryan⁸⁾にならい、計算値と観測値を同化 させる項を導入するモデルを採用している、図-1に本研 究で使用した表層水平流動場(水深10m)を示す。

(2) 大気·海洋間のCO2交換

単位面積あたり海洋表面を通して交換されるCO2の量 (大気・海洋間のCO2収支)は,大気と海洋表面のCO2分圧 差によって変化する.すなわち,大気の分圧が高ければ 大気から海洋にCO2は吸収され,海洋の分圧が高ければ 海洋から大気へCO2が放出される.以下に大気・海洋間 のCO2収支の算定式を示す⁹.

$$F_{OCEAN-AIR} = E \cdot \left(p C O_{2-OCEAN} - p C O_{2-AIR} \right)$$
(1)

ここで, *F_{OCEAN-AIR}*: *CO*₂収支量(mol/m²·yr), *E*: ガス交換 係数(mol/m²·yr・µatm), *pCO*_{2-OCEAN}:海洋のCO₂分圧(µ atm), *pCO*_{2-AIR}: 大気のCO₂分圧(µatm)である.この分 圧差による大気・海洋間におけるCO₂収支の算出は(1)式 が広く用いられている.この中で,大気の分圧に関して は化石燃料の燃焼の影響を直接受ける陸地の近くを除け

図-2 本研究結果と野尻¹⁰⁾との大気・海洋間CO₂分圧差比較(図内 数値は分圧差,薄緑色は海洋のCO₂分圧の年平均値)(atm)

ば地域による濃度の差が少ないことから,一定値として 与えている.しかしながら,海洋の分圧は海域によって 大きく異なることや,大気と比べ観測値が不足している ため,鈴木の式¹⁰⁾を用いて算出した.海洋の分圧は特に 水温,塩分,全炭酸濃度,全アルカリ度のパラメータに 寄与していることから以下の式を用いている.

$$pCO_{2-OCEAN} = \frac{\left[CO_2(aq)\right]}{K'_{H}}$$
(2)

ここで, [*CO*₂(*aq*)]:非解離のCO₂濃度, *K*'_H: CO₂の溶解度 (mol/kg·atm)である.また大気のCO₂分圧は現在でも上 昇し続けていることから,年間1.8ppmずつ増加させて計 算を行った.

分圧差により収支の方向性が決まるが,その交換速度 は海面付近での風の影響が大きい.(1)式中,E(ガス交 換係数)は風に依存する係数で,いわば収支の度合いを 決める値である.この係数に関しては,現在のところど の係数が最も現実に近いかは明らかにされていない.本 研究ではNASA提供の長期風速データを使用していること から,Tansら¹¹⁾の係数値を用いた.

$$E = 0.016(U - 3) \tag{3}$$

ここで, *E*:ガス交換係数, *U*:風速(m/s)である.この係数は風速が3m/s以上でなければ,大気・海洋間のCO₂収支は起きないという特徴がある.

また(1)~(3)の式を用いて算出した大気・海洋間CO₂分 圧差と,野尻¹²⁾が算出した亜寒帯地域での大気・海洋間 CO₂分圧差を図-2に示す.これより本計算結果では,こ の海域ではマイナスの数値が多い.このマイナスの値は 大気から海洋への吸収を意味するが,既往の知見¹³⁾や野 尻の算出からも同様に亜寒帯地域が吸収域となっている また分圧差も北アメリカ大陸付近では多少の差異はある ものの,亜寒帯海域中心部の約-20(atm)も概ね再現され ていることが推察される.

(3) 生物ポンプ

海洋表層では大気から溶け込んだCO。と栄養塩を材料 にして植物プランクトンが光合成により無機炭素(CO2) から有機炭素を生産している.これを基礎生産(Primary production)と呼ぶ.この生成された有機炭素は消費者 (大型プランクトン,魚類)に利用されるが,利用されな かった有機炭素は基礎生産の行われる有光層(~200m)か らやがて中・深層へと落下し,そこで分解・消費を受け再 び無機炭素へと戻る.こうした有光層から下層への炭素 物質の移送のことは生物ポンプ14)と称されている.基礎 生産(一次生産)は栄養素の供給の違いから,再生生産と 新生産に区別される.再生生産とは有光層内で分解・再 生された栄養素を用いた有機物生産であり有機炭素を表 層から深層へ運ぶことには関与していない.一方,新生 産は中・深層からの湧き上がりや河川および大気からも たらされた栄養素を使っての有機物生産であり,定常状 態では表層から移動除去される有機炭素量に等しい.生 産量比では再生生産の方が圧倒的に多いが,再生生産は 炭素の移動には関与していないため,本研究では新生産 のみを扱うこととした.系外からの移入栄養物質に依存 した新生産は,基礎生産の大きさに関係している.基礎 生産に占める新生産の割合は明らかにされてはいないが, 一般的には10%前後であると推測されている14).

しかしながら場所による変動があることから,基礎生産に対する新生産の割合を下記の式¹⁴⁾を用いて算出した.

$$f = pp/410 \tag{4}$$

$$f = pp/400 - pp/340000$$
 (5)

ここで, f:基礎生産に対する新生産の割合, pp:基 礎生産量(gC・m⁻²・year⁻¹).基礎生産が150gC・m⁻²・year⁻¹以 下であれば式(4)を用いて,基礎生産が150~500gC・m⁻²・ year⁻¹までは式(5)を用いる.

本モデルでは,新生産量を生物ポンプによる炭素の鉛 直輸送量として,有光層(1~4層の各層)において輸送量 相当分を海洋中の炭素量から削減し,中層(5~8層の各 層)において沈降量(輸送量)を海洋中の炭素量に加算し ている.また,基となる式(4),(5)における基礎生産量 (pp)にはBerger¹⁵⁾らによる年平均基礎生産量分布図を使 用している.この生物による一連の過程(生物ポンプ)を 図-3に示す.また,生物ポンプの再現は,生物生産によ るCO2輸送の観測が少なく,比較が出来ない為,この手 法が妥当であると仮定しCO2濃度予測を行うこととする.

図-3 生物ポンプフローチャート12)

3.02海洋隔離の濃度予測

海洋は自然のプロセスにおいても大気中に存在する CO₂を吸収しているが,その吸収速度は人類が大気中に 排出するCO₂の量に比べて緩やかであるため,排出され たCO₂のすべてを吸収することができない.そこで,吸 収速度を抑えている海洋表層を通らずに直接海洋にCO₂ を注入してしまうという考えがCO₂の海洋隔離である.

CO₂海洋隔離は化石燃料を燃焼して発生するCO₂を排ガ スの中から分離・回収して海洋へ送り込んで,大気から 長期間隔離する構想である.海洋隔離は海洋環境への影 響をできるだけ小さくするために,陸上プラントからパ イプラインを敷設して所定の深度の海底固定点からOO₂ を投入する方式(固定点放流)や,回収されたCO₂を液化 して海上輸送し,所定の海域で船からパイプを吊り下げ 低速で曳航しながら海洋中にCO₂を連続投入する方式(移 動点放流),水深が深く海水の流れや乱れがほとんど無 いと考えられる海底にCO₂を貯留する方式(深海底貯留) が考えられている¹⁵⁾.

本研究ではこの内,移動点放流を想定し解析を行った.

(1) 投入する002の量と投入海域の設定

地球温暖化に対する関心や国民の省エネに対する意 識は次第に高まりつつあり,平成18年に環境省が発表し た報告書¹⁾によれば2004年日本での00₂排出量は前年比で 減少をみせたものの,2003年の日本の00₂排出量(現段階 での最高値)は12.59億トン(00₂換算)である.この値は COP3で定められた1990年の排出量(0.307Gt)に対して約 0.052Gt(炭素換算)超過している値である.この超過分 の00₂を50年間連続で同一地点に投入し続けた時の50年 後の濃度上昇を予測した.

CO₂の投入海域は,日本の排他的経済水域内 (Exclusive Economic Zone: EEZ)とした.これは公海で あると一般国際法や条約上の義務により,CO₂を海洋に

隔離するうえで制限を受ける可能性があるためである. またこの海域(図-4)はTakahashiら¹³⁾によればO2_の吸収 域であるため,投入したOO2が表層に達しにくいと考え られる.

(2) 002濃度予測の計算モデル

本研究では002を海洋に投入した際の002濃度予測を行うために,前章の海洋大循環モデル,大気・海洋間の002 収支,生物ポンプを考慮した数値モデルを構築した.既存の知見では,流動,生態系等の個々のモデル構築は行われているものの,それらを組み合わせた,特に生物ポンプを考慮したモデルは少ない¹⁷⁾.以下に計算式を示す.

$$\frac{\partial C}{\partial t} + u\nabla C = K_H \nabla^2 C + K_V \frac{\partial^2 C}{\partial z^2}$$

$$-F_{OCEAN-AIR}(\lambda, \phi) + F_{inj}(\lambda, \phi, z) - F_{bio}(\lambda, \phi, z)$$
(6)

ここで,C:全炭酸濃度(μ mol/kg),t:時間(s), K_H : 水平方向拡散係数(1.0×10⁷cm²/s), K_V :鉛直方向拡散 係数(1.0cm²/s), $F_{OCEAN-AIR}$:大気・海洋間のCO₂収支, F_{inj} :CO₂の投入濃度(μ mol/kg·yr), F_{bio} :生物ポンプ移 送量(μ mol/kg·yr)(**2.(3)**から算出), :球面座標の緯 度, :球面座標の経度である.

(3) CO2濃度予測に使用したデータ

使用した水温・塩分データは,日本海洋データセン ター(Japan Oceanographic Data Center:JODC)所蔵の 1906年~1988年にわたる約80年間の東経100度~西経60 度区間に存在するBT類(XBT・MBT・DBT・AXBT:船上から計 測器を用いて計測するもの),SD類(STD,CTD:各層観測) を整理して使用した.風速のデータは,SSM/I衛星風速 観測値を使用した.SSM/I海上風データはNASAのGoddard Space Flight Center (GSFC)から提供されたもので,太 平洋全域の1988年~1998年までの6時間毎のデータを整 理して使用した.また,初期値としての全炭酸濃度と全

アルカリ度はChenら¹⁸⁾が報告した次式(7),(8)より水温 ごとに算出し使用した.

$$CO_{2} = 2236 - 9.4\theta(\pm 21) \qquad \theta \le 25 CO_{2} = 2500 - 20\theta(\pm 23) \qquad \theta > 25$$
(7)

$$TA = 2383 - 3.1\theta(\pm 10) \qquad \theta \le 25 TA = 2306 \qquad (\pm 10) \qquad \theta > 25$$
(8)

ここで, *CO*₂:全炭酸濃度(µmol/kg), *TA*:全アルカ リ度(µequiv/kg), :水温()である.基礎生産量は Berger¹⁵⁾が報告した1次生産分布から,対象海域の値を 抜粋し使用した.

(4) 02の濃度予測計算の結果

はじめに,どの水深に00,を投入するのが妥当である かを検証するために,投入地点において各層に00,を投 入し,計算開始から50年後の有光層に到達した00%総量 と4000m以深(海底層)に到達したCO。総量を算出した.た だし,多種多様な生物が生息している有光層である第1 ~4層と海底生物が生息しているとされる深度4000m以深 である第10~11層はCO。投入による直接的な影響が大き いと考えられるため投入水深から外した.図-5に50年後 の各投入層別
い
2濃度と初期値の
濃度鉛直分布図を示す (投入地点).図-5より,各投入層付近で濃度上昇がみら れるが,その他の層では濃度上昇が低いことがわかる. また計算結果より投入が第7層以深であれば有光層への CO2到達量が総投入量の約5%以下であることがわかった. さらに,第8層以浅であれば4000m以深にはCO₂の到達量 はほぼ皆無に等しいということから, 00,の投入深度は 第7層および第8層が有力であることがわかる.しかし, 経済面の考慮や,海水との密度差から3000m以深ではCO。 は浮上せずに沈降していくと考えられる¹⁹ことから,第 7層の方が適していると考えられる.

次にこの結果を踏まえ,第7層にCO2を50年間投入し続

けたケースとCO2を投入しなかったケースを計算し,CO2 海洋隔離による濃度上昇を比較した.図-6に第7層にお ける両ケースの差(CO2濃度増加量)を,図-7に表層(第1 層)における両ケースの差(CO2濃度増加量)を示す.図-6 より投入地点の海域では高いCO2濃度上昇があるが,投 入地点から東側の海域ではCO2濃度は薄くなり広く拡散 している.東太平洋の赤道域では50年後の濃度上昇が 0.1(µmol/kg)と低い値となるが,投入点近傍での濃度 上昇値は68.2 (µmol/kg)で投入地点から400km四方の範 囲では濃度上昇は30(µmol/kg)程度であった.また,南 太平洋側への濃度上昇は50年間連続投入した場合でもほ ぽ皆無に等しいことがわかった.

また,図-7よりメキシコ沿岸海域での002濃度上昇が顕 著であった.その原因として考えられるのは,放出点か ら放出した002が移流拡散,特に北赤道反流に代表され る赤道付近の流れによって運ばれたためだと推察される. さらにメキシコ沿岸では大規模な湧昇流が観測されてい ることから,移送された002が表層付近に浮上したため と考えられる.また,この海域では基礎生産が多い地域

であるので¹⁵⁾,一時的に表層付近の002濃度は低下することで放出点から輸送された002が浮上したと考えられる.

4. 投入した002が生物に与える影響

CO₂の海洋隔離による生物への影響評価は,CO₂が生物 に与える影響について既往の知見を整理し,本計算結果 (図-8)と照らし合わせることによって行った.海洋に CO₂を投入すると海水のpHが下がる等の影響によって生 物に影響が生じると考えられる.本研究では,第7層 (1150m)にCO₂を投入することが有効であると予測された が,中深層生物に対するCO₂曝露影響や曝露実験例に関 する知見は現在のところ非常に少ない²¹⁾.そのため,本 研究ではCO₂曝露実験例のある浅海魚に対するKikkawaら ²¹⁾の知見を引用して評価を行った.

Kikkawaら²¹⁾は数種類の魚類を対象として,それぞれ の魚類に対して卵,仔魚,稚魚等を用いたO2⁻耐性実験 を行っている²¹⁾.この中でマダイを用いた24時間の曝露 実験では,PHが6.55に低下した状態では正常孵化率は 0%となり,さらにPHが6.16に低下した状態では生存率 が0%になると報告している.ここで,正常孵化率とは 奇形や未孵化等を含まない状態の個体数割合を指し,生 存率とはどんな形であれ生きている状態の個体数割合を 指すものである.

本計算結果では投入地点付近でCO2の濃度上昇がみられるが,表層付近に生息する生物に対する生物影響を検討するため,投入点近傍の日本近海の第1層pH分布から海洋生物に対するCO2影響を検討した(図-8).pHは1気圧上の算出方法に基づき以下の式を用いて算出した.

$$pH = -\log a_H \tag{9}$$

ここで, a_H:水素イオン活量である.

表層における本計算結果から,投入地点ではpH=8.17 であった.そこでKikkawaら²¹⁾の報告と本計算結果の比 較を行った.その結果,マダイ卵の正常孵化率および稚魚の生残率は,24時間暴露の場合,その影響は20%以下程度と推察された.

5.まとめ

本研究では,地球温暖化の主要因と考えられている CO₂を抑制する技術の1つであるCO₂の海洋隔離に着目し, 海洋大循環,大気・海洋間のCO₂収支,生物ポンプという 海洋の炭素循環を支配する過程を考慮したモデルを使用 し,CO₂濃度予測およびCO₂濃度上昇に伴う生物影響の評 価を行なった.

本研究の第一段階としてCO。海洋隔離シミュレーショ ンを実施し,CO,の投入深度について検討を行った.そ の結果,投入したCO。が表層にも海底層にも到達量が少 なく,またコスト面からも第7層(800m~1500m)が投入深 度として適していると考えられた.次に00,濃度増加分 布の結果からpHを算出し,CO,が生物に与える影響につ いて既往の知見と本計算結果を比較検討することにより 生物への影響評価を行った.その結果,本計算結果(pH) では魚類(マダイ)への影響は,投入点近傍域が最も大き く,特に投入地点から200km四方以内では生物影響を詳 細に検討する必要があると推測された.本計算モデルで はメッシュサイズが粗く, 広範囲での評価は行えるもの の,近傍域のCO,濃度は平均化されてしまうため,生物 影響を正確に評価するためにはさらなる投入地点近傍域 の計算の細分化,パイプからの密度噴流によるごく近傍 域での00,濃度評価を行う必要があると考えられる.

6. 今後の課題

本研究で使用した数値モデルのメッシュ格子幅は経緯 度2×2度であるため太平洋全体と広域で見た場合での評 価はできるものの,002の放出口近傍のような局所的な 範囲での評価ができていないと考えられるため,今後は その評価が必要である.また,生物評価(pH)においても, 放出点近傍に存在が確認されている種での生物評価や長 期の慢性毒性影響に対する影響評価が必要であると考え られる.

参考文献

- 1) 環境白書:環境省平成18年度版,2006.
- 2) 野崎義行:地球温暖化と海,東京大学出版会,1994.
- N. Nakashiki, T. Hikita: OCEAN INTERMEDIATE DEPTH INJECTION, Energy Convers. Mgmt, Vol.36, No.6-9, pp.453-456, 1995.
- M. Sorai, T. Osumi: Ocean uptake potential for carbon dioxide sequestration, Geochemical Journal, Vol.39, pp.26-45, 2005.

- 5) 長谷川一幸,和田明,西村玲輔,高野憲治:太平洋海域 での二酸化炭素中層放流の検討,水工学論文集, Vol.47, pp.1297-1302, 2003.
- 長谷川一幸,和田明,西村玲輔,高野憲治:NSCAT・SSM/I 衛星観測データを用いた太平洋3次元流動場による二酸 化炭素の海洋隔離の可能性に関する研究,水工学論文集, Vol.45, pp.1063-1068, 2001.
- K. Hasegawa, A.Wada, R. Nishimura, K. Takano: Calculations of the consentration of radionuclides (Cs-137,Sr-90,Pu-239/240) in The Pacific Ocean, Journal of Hydroscience and Hydraulic Engineering, Vol.20, No.2, pp.277-237, November, 2002.
- Sarmiento, J.L., and Bryan, K.: An ocean transport model for the Atlantic, J. Geophys. Res., No.87, pp.394-408, 1982.
- 9) 井上久幸:海洋における二酸化炭素,月刊海洋,号外 No.8, pp.66-71,1995.
- 10) 鈴木淳:海水の炭酸系とサンゴ礁の光合成・石灰化による その変化,地質調査所月報,第10号,第45巻,pp.573-623,1994.
- Tans, P.P., I.Y.Fung and T. Takahashi: Observational constrains on the global Atmospheric CO₂ budget, Science, No.247, pp.1431-1438, 1990.
- 12) 野尻幸宏:環境儀,国立環境研究所研究情報誌,No.6, pp.4-14,2002.
- 13) T. Takahashi, S. C. Sutherlanda, C. Sweeneya, A. Poissonb, N. Metzlb, B. Tilbrookc, N. Batesd, R. Wanninkhofe, R.A. Feelyf, C. Sabinef, J. Olafssong, Y. Nojiri: Global sea-air CO₂ flux based on climatological surface ocean pCO₂, and seasonal biological and temperature effects, Deep-Sea Research, Vol.II, No.49, pp.1601-1622, 2002.
- 14) 半田暢彦:海洋生物,大気水圏科学からみた地球温暖化, pp.271-286,1996.
- Berger, W.H.: Ocean Productivity and Paleoproductivity -An Overview Productivity of the Ocean, pp.429-455, 1989.
- 16) 尾崎雅彦: CO₂ 海洋隔離における希釈放流技術,月刊海 洋, Vol.11,33, pp.767-770,2001.
- 17) 青木繁明:炭素循環モニタリングのための海洋大循環モ デル,資源と環境, Vol.4, No.1, pp.13-23, 1995.
- Chen, Chen-Tung, A. and Pytkowicz, R.M.: On the total CO₂titration alkalinity, Nature, No.281, pp.362-365, 1979.
- 19) 尾崎雅彦: 深海への溶解希釈による CO₂ 海洋隔離の可能
 性,日本深海技術協会会報, Vol.42, pp.4-9, 2004.
- 20) 服部明彦:海洋生化学,東京大学出版会,pp.339-366, 1973.
- T. Kikkawa, A. Ishimatsu, J. Kita: Acute CO₂ tolerance during the early developmental stage of four marine teleosts, Environmental Toxicology Vol.18, pp.375-382, 2003.

(2006.9.30受付)