谷底平地における流路形状の分析と地形の成因 ANALYSIS OF STREAM CHANNEL GEOMETRY AND PHYSIOGRAPHIC FORMATIVE PROCESS IN VALLEY FLATS

野上 毅¹・渡邊 康玄²・安田 浩保²・長谷川 和義³ Takeshi NOGAMI, Yasuharu WATANABE, Hiroyasu YASUDA and Kazuyoshi HASEGAWA

¹正会員 (独)寒地土木研究所 寒地河川チーム (〒062-8602 札幌市豊平区平岸1条3丁目)
 ²正会員 工博 (独)寒地土木研究所 寒地河川チーム (〒062-8602 札幌市豊平区平岸1条3丁目)
 ³正会員 工博 (財)河川環境管理財団 研究顧問 (〒060-0061 札幌市中央区南1条西7丁目16-2)

Disasters caused by torrential downpours have recently been increasing throughout our nation. In particular, there have been many cases of flood damage on small and medium-sized rivers with relatively small design flood discharge in valley flats. Specific instances of this type damage include that which occurred in Tochigi Prefecture's Yosasa River in 1998, the Appetsu River in Hokkaido in 2003. These disasters are characterized by the flow of flood waters that were not confined to the river channel and caused damage to many houses, roads and bridges. In this study, we examined a method for adopting double Fourier analysis, which is used for shape analysis of the results of experiments on sediment hydraulics, to assess the flow channel geometry of an actual valley flat. The origin of the terrain of the valley flat was estimated based on the results of sediment hydraulic studies, including experiments on compound meandering channel and double-row bar. The potential for utilizing the estimate results to predict the flow of flood waters and measures to reduce the impact of disasters at times of large-scale flooding in a valley flat was then indicated.

Key Words : valley flat, flood flow, riverbed morphology, fluvial process

1. はじめに

最近,全国各地で豪雨災害が増加傾向にある.特に, 1998年の栃木県余笹川,2003年の北海道厚別川,2004年 の福井県足羽川等,谷底平地内を流れる比較的計画規模 の小さな中小河川での洪水被害が多発している.これら の災害に特徴的なことは,河道法線形に関係なく洪水流 が流下し,家屋,道路および橋梁に多くの被害が生じた ことである.つまり蛇行河道に沿った流れと谷軸に対し て対称な流れとが8の字を描くように流下したことが確 認されており,谷軸に対して河道と対称となる流れが発 生した箇所において被害が大きくなる傾向が見られた. 渡邊ら¹⁰は,何故そのような氾濫流の挙動がみられたの かを厚別川を対象に分析し,このような出水時に形成さ れると考えられる谷幅全幅の規模の河床形状と河道法線 形との関係を検討し,谷底平地における氾濫流の挙動特 性の把握を行った.

上野ら²は1983年に谷底平地を流れる三隅川の洪水氾 濫状況把握を目的に直線水路内複断面蛇行流路の実験水 路を用いているなど谷底平地の地形には複断面蛇行流路 と類似した形状もみられることを指摘している. 複断面 蛇行流路については、芦田³³ら、福岡⁴⁰らなどにより、 低水路蛇行の曲頂部内岸から次の曲頂部内岸へ最短距離 を結ぶように主流が生じることが知られており、厚別川 や余笹川など谷底平地の出水で河道法線と関係なく流下 する現象と類似している.

また、目黒、長谷川ら⁵は、山地河川を対象とした実 験において、大流量で複列砂州を発生させた後、小流量 を通水することによって網状流路が形成され、その後、 片側の閉塞により主流路に水が集中し、単列へと遷移す る結果と山地河川の実際の地形との比較を行っている. 同様な現象は、流量を変えない条件においても、初期に 多モード(多列)の砂州が形成された場合、時間の経過 に伴って、低モードに移行することが水理実験や数値シ ミュレーションによって知られている^{67,8}. このような 複列砂州の特徴は厚別川の谷規模の氾濫現象の随所にみ られた⁹.

本研究は,前述した土砂水理学の既往知見を基本にして,水理実験結果の解析などに適用される形状解析手法

¹⁰である二重フーリエ解析を谷規模の実河川へ適用し, 波数成分の特性を用いて流路形状の特性分析を行った. これより谷底平地の地形の成因を推定するとともに大規 模出水時における洪水流の挙動特性の推定へと応用の可 能性について考察した.

2. 対象河川の概要

厚別川は、流域面積290.7km²、河道長45kmの北海道日 高地方にある2級河川である.2003年8月に厚別川では3 日雨量が285mm(豊田)という豪雨により、既往最大規模 の約2200m³/s(豊田)という河道の流下能力(赤無橋) 1000m³/sを大幅に超える出水が生起し、洪水流は堤内地 を含む谷幅全体を覆うように流れた⁹.

また比較対象河川とした那珂川の支川である余笹川は, 1998年に集中豪雨による水害が発生し,厚別川同様に湾 曲部で河道と関係なく直進する洪水流が発生した.余笹 川は,表-1に示すように厚別川と比較すると,勾配が急 である点を除いて,蛇行度,蛇行波長,流域面積など類 似点が多い河川である.なお余笹川の谷底平地は,土砂 移動が活発な時期に段丘面が形成された後,浸食されな がら,現在の段丘崖に挟まれた谷底平地が形成されたと いわれている^{11,12}.

3. 流路形状の分析

(1) 流量変動と河床形態の対応関係

厚別川の谷規模の現象に対して、一般には河道内を対象とする中規模河床形態¹³⁾の領域区分を適用すると図-1となる¹⁾. 図から1000m³/s程度までは単列砂州領域にあり、1000m³/sを超えると単列砂州領域から複列砂州領域へと遷移すると判断される. 谷規模に氾濫した2003年8月洪水のピーク流量は、2200m³/sであることから、ピーク時の氾濫流の水理条件は複列砂州領域になっていたことがわかる. また*Bi^{0.2}h*の縦断分布も、1000m³/sと2200m³/sでその分布が大きく変わることがわかる. 地形条件、流量変動によって*Bh*や河床形態が変わるため、どのような流量条件下で起こる現象かを把握しながら、流路形状の形成要因の分析を行った.

図-2は蛇行の成因と砂州波長について示した模式図で ある.蛇行の成因が複列砂州の場合,8の字蛇行が明瞭 でないときには、みかけの蛇行波長が砂州波長の2倍に なることがわかる.これは複列砂州から単列砂州への モード減少過程をみた水理実験および線形解析による波 数の変化において、複列砂州の波数から概ね1/2の波数 へと遷移すること⁸(つまり2倍の波長への遷移)が知 られており、そのような複列と単列が共存する砂州地形 上で流量が減少した後に砂州前縁に水みちが形成された

表-1 対象河川の概要

	厚別川	余笹川
洪水流量	2200m ³ /s	1300m³/s
河道満杯流量	300m ³ /s	400m ³ /s
B(河道満杯時)	70m	50m
流域面積	344 km^2	291 km ²
蛇行度	1.26	1.25
蛇行波長	1600m	1300m
谷幅	500m	400m
平均谷勾配	1/300	1/80

蛇行度=河道延長/谷軸延長

図-1 厚別川の流量変動に伴う河床形態の変化

|--|

単列砂州波長(or 蛇行波長)	L_o / L_c		
英 1徐式	厚別川	余笹川	
$L_c = 10B$ ($L_c = 5 \sim 15B$ の平均)	2.3	2.6	
$L_{c} = 5\sqrt{\frac{Bh}{C_{f}}} = \frac{5B^{1/10}}{n^{3/5}\sqrt{g}} \left(\frac{Q}{i^{1/2}}\right)^{2/5}$	2.5	2.5	
上記の平均	2.4	2.6	

場合を想定した模式図である.

このような観点からまず最初に厚別川で低水路満杯流 量程度(300m³/s)の出水により形成される単列砂州地形 が現在の流路形状の形成要因かどうかについて蛇行波長 から検討を行った.

次に2200m³/sで形成される複列砂州地形が現在の流路 形状の形成要因かどうか,谷幅規模の地形を対象に二重 フーリエ解析を用いて検討を行った.

(2) 河道平面形の特徴

厚別川の河道平面形のスペクトル解析によって得られた1600mの蛇行波長¹¹および同様な方法で計測した余笹川の1300mの蛇行波長の成因について把握するため、既往の蛇行波長についての関係式を用いて検討を行う.

①-b 複断面蛇行流路:蛇行振幅が水路幅の半分の複断面蛇行流路

2-b 谷壁拘束流路:蛇行振幅が水路幅と同じ蛇行流路

図-3 地形モデルと二重フーリエ解析結果

図-4 複断面蛇行流路卓越波長合成モデル(①-c)

まず厚別川の河道満杯時の水面幅が70mで実測の蛇行 波長(L_a)が1600mであることから(流路蛇行波長)/(川幅) は23となり,(砂州波長)/(川幅)の平均的な値である5~ 15¹⁴⁾と比べて2倍程度大きい.同様に余笹川の(流路蛇行 波長)/(川幅)は26で平均的な値と比べて3倍程度大きい.

また交互砂州の線形安定性理論や河道の蛇行の発達に 関する線形理論から求めた各種理論式の内,流路内に形成される単列交互砂州の波長を示した代表的な式^{15,16)}を 用い,結果を表-2に整理した.ここで示した関係式から 求められる値(L_c)は、単列砂州波長およびその発達によ り形成された蛇行波長の平均的な値を示していると考え られ、この値と比較して、厚別川および余笹川の平面形 状から得られた1蛇行波長は2~3倍長く、両河川とも単 列砂州が成因であるとは言い難い.

(3) 谷底平地の形状特性

前節の平面形の解析のみから得られる情報は限定的で あるため、厚別川および余笹川の現在の谷底平地の地形 形状の解析を行う.

a)二重フーリエ解析と分析方法

二重フーリエ解析は谷地形を式(1)で表した時の, a_{ij} を求めるものである¹⁰⁾.

$$z = \sum_{i=0}^{I} \sum_{j=0}^{J} \alpha_{ij} \sin(i\frac{2\pi}{2B_v}n - \frac{\pi}{2}\frac{1 + (-1)^i}{2})\cos(\frac{2\pi}{L}s - \sigma_{ij})$$
(1)

ここでB_vは氾濫幅, i は砂州列数, j は単列の卓越波

長を基本波長とした時の波数, $a_{i,j}$ は砂州列i, 波数jの波の振幅, σ_{ij} はi=1, j=1の波に対する位相, Lは基本波長でこの場合i=1, j=1の波の波長としている. なお基本波長(1-1の波の波長)は、平面形から得られる蛇行波長に近い値であると考えた.

図-3は特徴的な砂州地形,河川地形の単純なモデルと 二重フーリエ解析結果(各 a_{ij} は絶対値)を示したもので ある.

①-aは長谷川ら¹⁰⁾の実験(**表**-3)により形成された地形 において得られた卓越波長成分(*a*₁₁, *a*₂₀, *a*₃₁ をそ れぞれ0.67, -0.44, 0.29)を合成した典型的な単列砂 州地形モデルとその解析結果である.

②-aは渡邊ら⁸の実験結果より卓越する(1,1),(2,2), (2,0)を合成した単列成分を合わせ持つ複列砂州の地形 モデルである.この2つと実河川の解析結果と比較する ことで単列ー複列の砂州地形の特徴を把握することがで きると考えられる.

次に①-b, ②-bは高水敷の高さおよび低水路の高さを 一定にした複断面蛇行流路(法線形はsine-generated curve)である.これは渡邊ら¹⁾の研究過程において複断 面蛇行流路にも複列(2,2)の成分が検出されたことから, 蛇行振幅と水路幅の比を用いて低水路法線形の解析結果 への影響の把握を目的に比較を行った.

①-bは蛇行振幅が水路幅の半分,②-bは蛇行振幅が水路幅と同じという条件を仮定したもので,以下,①-bを 複断面蛇行流路,②-bを谷壁拘束流路と呼ぶこととする. この2つとの比較を行うことで低水路法線形や水みちの 深掘れ,河床低下等による解析結果への影響を比較でき ると考えられる.

これらのモデル地形を用いた二重フーリエ解析結果を 比較すると(2,2)が卓越している②と,(2,2)が卓越し ていない①のグループに分かれることが分かる.ただし ①のグループは、単列砂州(①-a)の *a*₂₀ が負(凸)に対し

表-3 実験諸元

	幅	流量	勾配	B∕h	粒径	時間	文献
(1)-a	0.22 m	0.7 {/s	1/80	26	0.43mm	定常後	長谷川ら10)
②−a	0.50 m	7.6 ℓ/s	1/80	54	0.76mm	20分	渡邊ら8)

	(l)-a	(1)-b	(<u>l</u>)-c	(2)-b	(2)-a
α_{11}	1	1	1	1	1
$lpha_{20}$	-1.4	2.2	3.4	-0.6	-0.9
α_{31}	0.5	2.4	2.0	0.2	0.2
$lpha_{22}$	0.04	0.5	0.1	0.8	1.6
α_{40}	-0.2	2.0	0.5	0.5	-0.1

表-4 地形モデルの解析結果

ただし各値は a_{11} を1とした時の比

て, 複断面蛇行流路(①-b)は正(凹)と符号が逆である.

図-4で示した地形モデル(①-c)は①-bの卓越波 (1,1),(2,0),(3,1)を1:2:2で合成した地形である.これ からも単列砂州(①-a)と複断面蛇行流路(①-b)とを比較 すると、卓越波が類似しているが、地形の裏表が逆とい う点で対称的な地形とも言える.

表-4は**図-3**の結果から振幅を整理したものである.例 えば a_{22} / a_{11} の値は、①-a < ①-b < ②-b < ②aの順に大きいことが分かる.以上のモデル分析結果と 比較しながら実際の地形データを用いて解析を行う.

b) 谷底平地の波数成分の抽出

厚別川では、2003年の河道横断地形に対して二重フー リエ解析を行った. 図-5は用いた地形データを立体的に 表示した図である. 横断方向はKP6.4~12.2の横断デー タの内、河道法線および氾濫域の大部分が入るように下 流側で480m、上流側で400m幅を対象に各断面の幅を1と して16等分している.また標高については谷勾配 (1/313)ラインを基準(0)とした比高を平均水深で除して 無次元化し、標高の高い部分(谷壁)のデータは上限値 を設定した.また余笹川では、現在の地形図(1/25000) を用いて、黒川合流点上流2kmから東北本線下流1.5km下 流まで約6km(上下流とも各3km)を対象に氾濫幅を350m幅 にして厚別川と同様な解析を行った.

図-6,7に二重フーリエ解析を行った結果を示す.グラフの卓越波の傾向を図-3と比較すると(1,1),(2,2),(3,3),(4,4)と対角線上の波が卓越する傾向などは谷壁拘束流路(2)-b)に類似している.これは実際の谷底平地の低水路の平面形状が図-3の2-bに近いことから説明できる. 表-5,6は以上の結果をとりまとめたものである. a_{22}/a_{11} の値も,表-3で谷壁拘束流路(2)-b)に近い値であるが,砂州のモード減少過程の実験結果⁸⁾において河床形状を複列砂州,単列砂州,複列砂州と単列砂州が共存の3つに分けた時に,共存時の a_{22}/a_{11} の平均値は0.46であり,その値に近い値でもある.

c)砂州地形の特徴の把握と波の成分の再合成

前節で示した形状解析結果(表-5,6)では、低水路法線

 厚別川
 余笹川

 図-5
 解析に用いた地形データ

図-6 二重フーリエ解析結果(厚別川下流, KP6.4~9)

表-5 厚別川解析結果

			下流側		上流側
			KP 6.4~	-9	KP 9∼12.2
平均谷幅			580m		360m
河道平面形の蛇行半波長 (NEM,スペクトル解析)		L/2	800m		800m
			Case1	Case2	
二重フーリエ解析結果		α_{11}	1	1	1
(河床地形)		α_{20}	1.2	1.5	1.3
<i>α</i> 11を1とした時の比		α_{31}	0.1	0.3	0.1
		α_{22}	0.8	0.6	0.8
		α_{40}	0.2	0.2	-0.3
二重フーリエにより 得られた波の成分の	単列	L/2	850m	780m	750m
半波長(え」	複列	<i>L</i> /4	430m	390m	380m

形状(①-b, ②-b)の影響であるか,砂州地形(①-a, ②a)の影響であるかが明確でない. そこで谷底平地の流路 地形について最初に谷幅全幅規模の出水により複列砂州 が形成され,次にその低みに形成された水みちが中小出

			下流側 KP 1~4	上流側 KP 4~7
平均谷幅			400m	350m
河道平面形の蛇行半波 (MEM, スペクトル解析)	皮長	L/2	650m	650m
		α_{11}	1	1
二重フーリエ解析結果	₽.	α_{20}	0.9	1.0
(河床地形)		α_{31}	0.2	0.5
<i>α</i> 11を1とした時の比		α_{22}	0.5	0.6
		α_{40}	-0.1	0.4
二重フーリエにより 得られた波の成分の	単列	L/2	670m	580m
半波長 (λ_B)	複列	<i>L</i> /4	340m	290m

表-6 余笹川解析結果

水により河床低下して形成されたとの仮説に基づく検証 を行う.この仮説の根拠の1つとして,厚別川(KP9~ 12, B,=300m)の河岸と低水時水面との比高が約3mである のに対して,藤田ら⁶⁰の複列砂州実験結果における砂州 波高と水深の関係を用いて砂州波高を推定した場合は 1.2m程度となり,実際の比高より小さいことから,河床 低下による水みちの形成を仮定した.また1.2mの砂州波 高の場合,砂州の発達時間を藤田ら⁶⁰の予測式から計算 すると約35時間となり妥当な範囲内と考えられる.

長谷川ら10は、蛇行流路内の砂州形状が、直線流路に おける砂州形状と流路蛇行に伴う洗掘形状の線形和に よって表されるという仮説のもと、2つの実験ケースの α_{ii}の差分を用いて仮説の検証を行っている. その方法 を応用し、厚別川河岸部の標高より低い部分を水みち形 成後の河床低下分(①Channel)とし、河岸部より高い部 分を谷幅全幅規模の砂州地形(2)Bar)と考えた. それぞ れの二重フーリエ解析を行った結果を図-8.表-7に示す. ここで①Channelから検出された結果は、複断面蛇行 流路における法線形や低水路の深さなどの地形要素と関 連すると考えられる. また2Barにおいて, α₂₀ が正で あることは、複断面蛇行流路(①-b)の特徴と一致してお り谷全体のマクロな凹構造の表れと定性的に解釈できる. しかし本研究の着目点は中規模河床形態であり、谷幅の 変化、谷軸の湾曲など大規模な谷地形の影響については 未検討で今後の課題である.

以上から谷底平地の地形的特徴は、複断面蛇行流路の 特徴と共に、複列砂州の特徴を併せ持つと考えられる. また実際の地形形状および中規模河床形態などから総合 的に判断して単列砂州成分を持った複列砂州が元々の成 因で、その後、水みちの固定化、土砂供給の減少等によ り複断面蛇行流路の特徴が現れたのではないかと推測で きる.

表-7の結果から *a*²² / *a*¹¹ =0. 32/0. 45=0. 7となり,低水路形状(①Channel)による影響を除去した砂州地形の特徴として抽出したこの値を用いて,数値的に生成した合成地形が図-9である。同図は複列砂州形状と単列砂州形状が重ね合わされたもので,複列砂州の片側の砂州が交互に高さを変えることがわかる。

表-7 地形要素の分離とその結果

		(DChannel	②Bar
	元地形	低水路部のみ	低水路部除く
		水みち(河床低下)	砂州地形
α_{11}	0.81	0.37	0.45
α_{20}	1.03	0.18	0.85
α_{31}	0.43	0.14	0.28
α_{22}	0.61	0.30	0.32
$lpha_{40}$	-0.33	-0.19	-0.14

(元地形) 厚別川上流側 (KP 9~12.2)

図-9 厚別川上流側の合成地形モデル

4. 谷底平地の成因の考察

前章までの検討結果から、谷底平地の流路平面形状に ついての地形的成因に関する考察を以下のとおり行った。 河道法線の蛇行波長と谷底平地における単列成分の波長 とがほぼ一致するとともに、谷底平地の地形は単列と複 列の2つの砂州成分から形成されていることが明らかと なった. すなわち、厚別川や余笹川における谷底平地の 地形は、過去における幾度かの谷幅全幅を覆い尽くす大 規模出水によって形成された単列砂州成分を持つ複列砂 州によって形作られていると判断される.

図-10は、図-9をベースに地形形成過程を示した模式 図である. 複列砂州の片側の砂州が交互に高さを変えて いることから、小流量時の流路は単列の波数成分で表わ される相対的に低い箇所を流れることを意味し、現在の 河道法線はこの流路に基づいていると考えられる.

このように、従来から得られている砂州上の流れの特 性を利用することで谷底平地における氾濫流の概略の挙 動について推定が可能となることが明らかとなった.比 較的計画規模の小さい中小河川における大規模出水に対 する治水計画や土地利用計画はこの知見に基づき策定さ れるべきである.

5. 結論

本研究の結論を以下に示す.

- 河道の平面形状から得られた蛇行波長は、既往の各種 研究による平均的な単列砂州波長と比較して大きく、 河道内に形成される単列砂州が成因ではないと推測された.
- 2)現在の谷地形を河床と考え、二重フーリエ解析を行った結果、複列とその2倍の波長を持つ単列との2つの河床波成分が共存している結果を得た.
- 3) 谷底平地全体の河道平面形が大規模出水の繰り返しに より形成された地形をベースとしている可能性が示唆 された.
- 4)複断面蛇行流路,複列砂州に関する実験など既往の固定側岸条件における土砂水理学の成果を、地形学的な時間および空間スケールを持った谷底地形の形成や豪雨による氾濫流の予測や防災対策へと応用していくことの可能性を示した.

謝辞:本研究は、国土交通省北海道開発局の受託業務、 河川環境管理財団の河川整備基金助成による補助を受けた.記して謝意を表す.

参考文献

- 渡邊康玄,野上毅,安田浩保,長谷川和義:谷底平野における氾 濫流の挙動を規定する地形の成因,土木学会,河川技術論文 集,第12巻, pp. 49-54, Jun, 2006.
- と野鉄男, 宇民正:昭和58年7月豪雨による三隅川の河川構造 物災害とその実験的検討, 京都大学防災研究所年報, No27B-2, Apr. 1984.
- 3) 芦田和男, 江頭進治, 劉炳義, 滝口将志: 蛇行低水路を有する複 断面流路における流れの特性と河床変動機構, 京都大学防災 研究所年報, No32B-2, Apr. 1989.
- 4) 福岡捷二: 洪水の水理と河道の設計法, 森北出版, 2005.

- 5) 目黒嗣樹, 長谷川和義, 大塚剛史, 竜澤宏昌: 山地河川に見られ る大・中・小規模共存河床形態の再現実験, 土木学会, 水工学 論文集, 第45巻, pp. 733-738, Feb, 2001.
- 6)藤田裕一郎,赤松英樹,村本嘉雄:複列砂州と網状流路の形成 過程に関する実験,京都大学防災研究所年報,No29B-2,Apr. 1986.
- 7)渡邊康玄:モード干渉を考慮した砂州のモード減少過程,土木
 学会,水工学論文集,第50巻, pp. 967–972, Feb, 2006.
- 8)渡邊康玄,桑村貴志:複列砂州のモード減少過程に関する水理 実験,土木学会,水工学論文集,第48巻,pp. 195-200, Feb, 2004.
- 9) 長谷川和義:厚別川における河道変動の特徴,平成15年台風10 号北海道豪雨災害調査団報告書,土木学会水工学委員会,pp 142-148,2004.
- 10) 長谷川和義, 山岡勲: 発達した交互砂州の性状に関する実験 と解析, 土木学会, 水理講演会論文集, 第26巻, pp. 31-38, Feb, 1982.
- 11)伊藤和典,須賀堯三,茂木信祥,池田裕一:平成10年8月末の那 須出水による余笹川の流路変化の特性,土木学会,水工学論 文集,第44巻, pp. 407-412, Feb, 2000.
- 12)上野鉄男:余笹川の1998年水害の発生構造について,自然災害科学,24-3,pp303-321,2005.
- 13) 黒木幹男,岸力:中規模河床形態の領域区分に関する理論的 研究,土木学会論文報告集,342号,pp87-96,1984.
- 14) 末次忠司:河川の減災マニュアル,山海堂, pp8, 2004.
- 15)池田駿介, GaryParker, 澤井健二:河川の蛇行に関する統一見 解, 土木学会, 水理講演会論文集, 第24巻, pp. 339-349, Feb, 1980.
- 16)池田駿介:詳述水理学, 技報堂出版, pp. 392-403, 1999.
- 17) 土木学会水理委員会:洪水流の三次元流況と流路形態に関する研究, Mar, 1982.

(2006.9.30受付)