砂州による洪水流下能力の低下と治水上の 危険性評価に関する研究 阿賀野川河口砂州を対象として -

REDUCTON OF FLOOD FLOW CAPACITY DUE TO DEVELOPMENT OF SANDBARS IN RIVER MOUTH AND EVALUATION OF THE RISK FOR FLOOD CONTROL – A CASE STUDY FOR AGANO RIVER MOUTH –

細山田得三¹・田安正茂² · Pujiraharjo Alwafi³・佐藤啓明⁴ Tokuzo HOSOYAMADA, Masashige TAYASU, Pujiraharjo Alwafi and Yoshiaki SATO

¹正会員 工博 長岡技術科学大学助教授 環境・建設系(〒940-2188 新潟県長岡市上富岡町1603-1)
 ²正会員 工修 福井高等工業専門学校助手 環境都市工学科(〒916-8507 福井県鯖江市下司町)
 ³長岡技術科学大学大学院工学研究科博士課程エネルギー環境工学専攻
 ⁴工修 五洋建設株式会社(〒112-8576東京都文京区後楽2-2-8)

Flushing phenomena of sandbars in river mouths are particularly important safety considerations in risk assessments of potential flooding disasters in urban areas located on floodplains. The seasonal occurrence of sandbars in the Agano River mouth located in Niigata City in Japan were studied using a series of two-dimensional numerical simulations to understand the fundamental mechanisms responsible for the flushing of sandbars in the Agano River mouth. Governing equations of the numerical model were wave equations based on shallow water approximation. Equations of wash load and bed material load were added to the wave equations to calculate the deformation and flushing associated with the sandbars. A general curvilinear coordinate system was employed for the treatment of the arbitrary river shape. In addition, the temporal variation in river surface levels calculated empirically showed good agreement with actual field measurements. Similarly, the numerical results for the flushing of sandbars agree well with data collected in the field, and the risk of flooding disasters associated with the flushing of sandbars in the Agano River mouth was evaluated numerically.

Key Words : flood, sandbar, numerical simulation, long wave, curvilinear coordinate, suspended load, bed material load

1. はじめに

一般的に日本の河川の河口においては上・中流とは異 なり海岸波動による沖から岸向きへの砂の移動作用に よって河口砂州が形成されやすい¹⁾.河口砂州は河川の 流下能力を阻害するため,特に洪水時は治水安全上の障 害が懸念される.日本海に面した多くの河川は,冬季の 風浪によって河口砂州が発達し,夏季の出水時にこの問 題が生じ易くなっている.しかし,大出水時には砂州が フラッシュされることが想定され,これにより安全性が 確保されることとなる.洪水時の砂州による堰上げ水位 上昇と砂州のフラッシュ,それに伴う水位上昇の緩和の プロセスを理解することは河川管理上,極めて重要であ るが,現在のところ十分解明されているとは言えない ^{2),3)}.わが国全体の河川整備状況を考えると,上流およ び中流域の整備の結果,末端に位置している河口部に負 荷がかかる状況が生じており,河口砂州の管理技術の重 要性が高まっている.

一方,逆に河口砂州は希少動植物の生息地を形成する 場合があることや,塩水遡上を低減する有利な面もあり, 河口管理は困難な側面がある.近年の河口砂州に関する 研究としては東北大学の研究者が文科省科学研究費「全 日本比較河口学の展開」の共同研究者として全国に呼び かけ,日本全国各地区における河口の動態について調査 研究を行っている⁴⁾.例えば佐藤ら⁵⁾および真野ら⁶⁾は, 波動や潮汐と河川流によって土砂の輸送をモデル化し, それらがつりあった平衡状態での河口の開口幅の算定を 行っている.また,著者らの研究グループでは河口のモ デル地形を対象とした多方向不規則波の入射とそれに伴 う海浜流の生成と河口砂州の生成に関する数値実験を実 施している¹⁾.

現在,著者ら(長岡技術科学大学)と国土交通省北陸 地方整備局阿賀野川河川事務所は,河川懇談会(座長: 辻本哲郎名古屋大学教授)の援助を得て,阿賀野川の最 適な河口管理に関する3ヶ年にわたる研究を行っている. 阿賀野川はその河口を日本海側に持ち,冬季の砂州の発 達と夏季におけるそのフラッシュという季節的なサイク ルが明瞭な河川である.また,導流堤などの人口構造物 が無く,季節的な自然の外力に応じて砂州が変動してい る.本論文では,阿賀野川の河口砂州の治水安全面の特 性について検討している.その成果の1つとして本論文 は平成14年の阿賀野川の出水時のフラッシュによる河積 の増大および水位上昇の緩和特性を数値実験によって再 現し,河口砂州の動態とそれが治水安全性に与える影響 について考察した結果を報告する.

2. 数値計算法

(1) 基礎方程式

本研究では平面2次元の流れと砂の移動の計算を行った.河川の水位変動と流速分布を表現するために連続式, 浅水波近似を用いた運動方程式を使用した.河川の形状 に応じて計算格子を配置するため,一般曲線座標系を用 いた.式(1),(2),(3)に一般曲線座標系に変換された連 続式,および運動方程式を示す^{7),8}.

$$\frac{\partial}{\partial t} \left(\frac{h}{J} \right) + \frac{\partial}{\partial \xi} \left(\frac{Uh}{J} \right) + \frac{\partial}{\partial \eta} \left(\frac{Vh}{J} \right) = 0 \tag{1}$$

$$\frac{\partial}{\partial t} \left(\frac{Q^{\xi}}{J} \right) + \frac{\partial}{\partial \xi} \left(\frac{UQ^{\xi}}{J} \right) + \frac{\partial}{\partial \eta} \left(\frac{VQ^{\xi}}{J} \right) \\
- \frac{M}{J} \left(U \frac{\partial \xi_x}{\partial \xi} + V \frac{\partial \xi_x}{\partial \eta} \right) - \frac{N}{J} \left(U \frac{\partial \xi_y}{\partial \xi} + V \frac{\partial \xi_y}{\partial \eta} \right) \\
= -gh \left(\frac{\xi_x^2 + \xi_y^2}{J} \frac{\partial \xi_z}{\partial \xi} + \frac{\xi_x \eta_x + \xi_y \eta_y}{J} \frac{\partial \xi_z}{\partial \eta} \right) - \frac{\tau^{\xi_b}}{\rho J} \quad (2) \\
+ \frac{\xi_x^2}{J} \frac{\partial}{\partial \xi} \left(-\overline{u'^2}h \right) + \frac{\xi_y \eta_x}{J} \frac{\partial}{\partial \eta} \left(-\overline{u'^2}h \right) \\
+ \frac{\xi_y^2}{J} \frac{\partial}{\partial \xi} \left(-\overline{v'^2}h \right) + \frac{\xi_y \eta_y}{J} \frac{\partial}{\partial \eta} \left(-\overline{v'^2}h \right) \\
+ \frac{\xi_x \eta_y + \xi_y \eta_x}{J} \frac{\partial}{\partial \eta} \left(-\overline{u'v'}h \right) + \frac{2\xi_x \eta_y}{J} \frac{\partial}{\partial \xi} \left(-\overline{u'v'}h \right)$$

$$\frac{\partial}{\partial t} \left(\frac{Q^{\eta}}{J} \right) + \frac{\partial}{\partial \xi} \left(\frac{UQ^{\eta}}{J} \right) + \frac{\partial}{\partial \eta} \left(\frac{VQ^{\eta}}{J} \right)
- \frac{M}{J} \left(U \frac{\partial \eta_x}{\partial \xi} + V \frac{\partial \eta_x}{\partial \eta} \right) - \frac{N}{J} \left(U \frac{\partial \eta_y}{\partial \xi} + V \frac{\partial \eta_y}{\partial \eta} \right)
= -gh \left(\frac{\xi_x \eta_x + \xi_y \eta_y}{J} \frac{\partial z_s}{\xi} + \frac{\eta_x^2 + \eta_y^2}{J} \frac{\partial z_s}{\partial \eta} \right) - \frac{\tau^{\eta_b}}{\rho J} \quad (3)
+ \frac{\xi_x \eta_x}{J} \frac{\partial}{\partial \xi} \left(-\overline{u'^2}h \right) + \frac{\eta_x^2}{J} \frac{\partial}{\partial \eta} \left(-\overline{u'^2}h \right)
+ \frac{\xi_y \eta_y}{J} \frac{\partial}{\partial \xi} \left(-\overline{v'^2}h \right) + \frac{\eta_y^2}{J} \frac{\partial}{\partial \eta} \left(-\overline{v'^2}h \right)
+ \frac{\xi_x \eta_y + \xi_y \eta_x}{J} \frac{\partial}{\partial \xi} \left(-\overline{u'v'}h \right) + \frac{2\xi_x \eta_y}{J} \frac{\partial}{\partial \eta} \left(-\overline{u'v'}h \right)$$

ここに、t は時間、x, y はデカルト座標系による空間 座標、 ξ, η は一般座標系による空間座標、 $\xi_x, \eta_x, \xi_y,$ η_y は座標変換メトリックス、Jは座標変換ヤコビアン、 u, v は x, y 方向の水深平均流速、 U, V, Q^{ξ}, Q^{η} は流速 および線流量の一般曲線座標の反変成分、g は重力加速 度、h は水深、 ρ は水の密度、 z_s は基準面からの水位、

$$\tau$$
^{*ε*}, τ ^{*n*}は底面せん断応力の反変成分, $-u'^2$, $-u'v'$,

 $-v^{\prime 2}$ は x, y 座標系での水深平均レイノルズ応力である. レイノルズ応力の評価については平面2次元のk- ϵ 乱流モ

レイノルス応力の評価については平面2次元の*k-E* 乱流モ デルを用いた.

河床変動には掃流砂および浮遊砂の既往の理論を用いた.式(4),(5)に浮遊砂の移流拡散方程式およびMeyer-Peter and Mullereによる掃流砂量式を示す.掃流砂と浮遊砂の理論から求められた掃流砂量,基準面濃度,砂の巻き上げ速度を式(6)に示す土砂の連続式に代入することで地形変動,すなわちフラッシュ現象を表現した.

$$\begin{split} h \Biggl\{ \frac{\partial c}{\partial t} + u \Biggl(\xi_x \frac{\partial c}{\partial \xi} + \eta_x \frac{\partial c}{\partial \eta} \Biggr) + v \Biggl(\xi_y \frac{\partial c}{\partial \xi} + \eta_y \frac{\partial c}{\partial \eta} \Biggr) \Biggr\} \\ &= -\frac{h w_0^2}{\varepsilon_{sz}} c + w_0 E_s \\ &+ \xi_y \Biggl\{ \frac{\partial}{\partial \xi} \Biggl(\varepsilon_{sy} \xi_y \frac{\partial ch}{\partial \xi} \Biggr) + \frac{\partial}{\partial \xi} \Biggl(\varepsilon_{sy} \eta_y \frac{\partial ch}{\partial \eta} \Biggr) \Biggr\} \\ &+ \eta_y \Biggl\{ \frac{\partial}{\partial \eta} \Biggl(\varepsilon_{sy} \xi_y \frac{\partial ch}{\partial \xi} \Biggr) + \frac{\partial}{\partial \eta} \Biggl(\varepsilon_{sy} \eta_y \frac{\partial ch}{\partial \eta} \Biggr) \Biggr\}$$
(4)
$$q_B^{\ *} = 8.0 \times \Bigl(\tau^* \Bigr)^{2/3} \Biggl(1 - \frac{\tau_c^{\ *}}{\tau^*} \Biggr)^{2/3}$$
(5)

$$(1-\lambda)\frac{\partial}{\partial t}\left(\frac{z_{b}}{J}\right) = -\left(\frac{\partial}{\partial\xi}\left(\frac{q_{B\xi}}{J}\right) + \frac{\partial}{\partial\eta}\left(\frac{q_{B\eta}}{J}\right)\right) + w_{0} \times (C_{a} - E_{s})$$
(6)

ここに、c は土砂の濃度の水深方向平均、 w_0 は砂粒子 の最終沈降速度、 ε_{sy} は y 方向の砂の拡散係数、 Z_b は河 床高、 λ は砂の空隙率、 q_{B_s} 、 q_{B_n} は掃流砂量ベクトルの 反変成分、 C_a は基準点濃度、 E_s は無次元の砂の巻き上 げ速度である. τ^* 、 τ_c^* は、それぞれ、底面せん断応力、 限界掃流力である. 限界掃流力の算定には、単一粒径の 砂での岩垣による実験式を用いた. E_s の具体的な計算方 法としては、その値が平衡状態の基準点濃度と等しいこ とから、アインシュタイン式を用いた^{90,10}.

これらの式の誘導には、まず、直交デカルト座標に対 して示された支配方程式の独立変数(x, y)を微分の連鎖 則を用いて一般曲線座標系(*ξ*, *η*)へ書き換えた. さらに 線流量や流速などのベクトル量については、曲線座標系 の法線ベクトルと上記の変換で求めた支配方程式との内 積をとり、曲線座標に直交する成分(反変成分)の支配 方程式である式(2)、(3)を誘導した. これらのアルゴリ ズムの中には今のところ砂の安息角等を用いた側岸侵食 のような現象を含んでいない. 砂州の変化をさらに正確 に把握するためには今後、側岸侵食を検討していく必要 がある. フラッシュ現象についてここで示したような掃 流砂と浮遊砂という現象の総和としてのみで表現しきれ るとは考えにくい.また、底面上での砂の巻き上げフ ラックス評価式の適用限界や特性が結果に大きく影響す る場合がある. その点についても今後検討の必要がある.

(2) 計算条件および境界条件

図-1は河床高コンター(平成12年2月測深)と生成され た計算格子を示す.計算領域は、阿賀野川河口を含む約 5kmの区間とし下流端部は流下した河川水の影響が上流 部に及ばないよう、十分広い海域を確保した.座標系は 平面2次元一般曲線座標系とし、格子は流下方向に72格 子、横断方向に15格子とした.メッシュは、河川堤防の 上下流端の座標値を境界条件としたラプラス方程式を解 くことによって発生させた.計算領域は陸上部も含まれ ているが、本計算には水の遡上が含まれており、水位上 昇に伴う没水域の発生と減水時の底面の露出を評価する ことができる.

境界条件として図-2に示すように上流端に平成14年の 台風6号における流量,下流端に新潟西港での潮位によ る水位を与えた.なお,海側の流速の境界条件は自由流 出とした.またマニングの粗度係数は0.032とした.計 算ケースは,フラッシュ現象を含まない固定床のケース と,フラッシュ現象を想定し掃流砂と浮遊砂による移動

図-2 下流および上流端の境界条件

床を計算するケースに大別される.

3. 数値計算結果および考察

(1) 水位時系列による計算結果の検証

本研究で行った計算結果について検証するために用い た実観測データは水位である.大河川の出水時には流量 や流速について数値計算と比較できるほどの信頼性の高 い観測値を得ることは困難である.また,治水安全上の 基本となる量は水位である.本研究では松ヶ崎水位観測 所(図-1に位置を表示)で測定された水位の時系列につ いて計算と実測の比較を行った.前節で述べたように下 流端の境界条件としては,対象とした洪水時の新潟西港 の潮位データ(DL)を与えた.ただし,この潮位観測点 は阿賀野川河口とは位置が離れていることや潮位そのも のに誤差が含まれている可能性がある.実際に低気圧通 過中は場所的に平均水位の上昇が生じることがある.そ こで下流端の潮位を増減させ,実測との適合性を調べた. その中で最も水位がよく合うケースである,潮位データ

図-3 計算および実測の水位時系列の比較

に25cmを加える方法を採用することにした.新潟西港の DLの0cmがTP換算で約+10cmであるため、補正値は15cm となる.図-3には実測と計算による水位のハイドログラ フの結果を示す.水位の時系列は計算と実測でよい一致 を示している.またピーク時の水位もよく一致している ことがわかる.この結果より、新潟西港の潮位データ (DL)に25cmを加えた水位を計算の下流端条件と設定した.

(2) 流速ベクトル分布

図-4にはピーク流量時の流速ベクトル分布を示す.図 の上側は固定床すなわちフラッシュがない場合であり, 下側は移動床すなわちフラッシュを含むケースである. フラッシュが無い場合は,流量に対して十分な河積をと ることができない.そのため堰上げが生じ,砂州の上流 側はフラッシュがある場合に比べ,砂州上への河川水の 乗り上げがみられ,水域部が多い.また流速に関しては フラッシュしない場合は河口での河積がフラッシュする 場合に比べ小さいので流速が大きくなる.逆にフラッ シュする場合は,しない場合に比べ十分な河積が得られ るので水位上昇が少なく,河口での流速もフラッシュし ない場合に比べ大きく低減されている.また,逆に河道 内部では流速が大きくなっており,砂州の最狭部からや や上流側付近では流速ベクトルが左岸側で大きくなって いることが分かる.

(3) フラッシュによる河川縦断方向の河口地形の変化と 水位上昇の緩和

図-5は阿賀野川の中央部の河床高および水位の縦断方 向の分布についてフラッシュの有無を比較して示してい る.各図の左方向が上流側である.点線が移動床(フ ラッシュを含む場合),実線は固定床(フラッシュがな い場合)を表している.各図中には右岸側堤防標高(点

図-4 河口付近の流速ベクトルの分布 上段:固定床 下段:移動床(フラッシュあり)

線) もあわせて示している. 上段から下段方向に時間が 経過している.経過時間がちょうど1日のときはまだ地 形の変化がおこっていないため、フラッシュする場合と しない場合に水位の違いは見られない. しかし時間の経 過とともに,流量が増大し,徐々に河口地形標高に変化 が見られるようになる.流量のピーク時に地形は砂州部 の底面で大きく削られ、砂州よりやや下流側に堆積して いる. フラッシュを含まない固定床の場合はそれがない ため、十分な河積を確保できず、流下能力の低減に伴う 堰上げが生じ、大きな水位上昇が見られる. 経過時間が 1日と15時間から20時間くらいの時間帯では、フラッ シュしない場合は河口の最も標高の低い堤防天端高とほ ぼ同じ高さまで水位が上昇していることが分かる. 河口 砂州のフラッシュの有無による水位差が最も顕著なのは、 水位が最高になった時点(図-5上から3段目)であり、 2m程度となっている、また、その差は河口付近で最大と なっており、上流に向かうにつれてその差は減少してい る.本研究の範囲では、河口が最も危険となる結果とな り、上流では堤防天端高に余裕があるように思われるが、 上流側の堤防の標高が一部低くなっている部分があり, 上流方向で部分的な危険がないと断言することは難しい.

図-5 水位、河床標高の時間変化と堤防標高

図-6にはフラッシュ現象による2つの時刻での河床地 形変動の鳥瞰図および河口の横断面図を示す. 鳥瞰図で は右上側が上流端,左下側が河口である.時間が経過す るにつれて,河口部で砂州がフラッシュされて行く様子 がわかる.砂州は中央部でまず浸食されはじめ,崩れた 砂は,砂州のやや海側で一旦,堆積しはじめる.砂州部 分は河口幅が狭いため流速が大きくなり地形は削られ, 砂州の崩壊へと至る.また河口よりやや下流部は河口幅 も広がり,河積が増大して流速が低下する.このため, 崩壊した砂州から移動してきた土砂が移動できなくなり 堆積していく傾向があらわれている.このようにして堆 積した土砂が河口テラスを形成していく.

図-6の下部に示した横断面分布には河床高と水位について移動床の場合と固定床の場合を比較して示している. 計算開始から19時間程度から河床形状に変化が起こりはじめ、特に右岸側(各図の左側)の砂州が浸食されて河床の低下が進行し、右岸の砂州のフラッシュの発生に至っている.このようなフラッシュの非対称性は、流れのべ

図-6 地形変化の鳥瞰図と河床、水位の横断分布

クトルにおいて右岸側が速いことに対応している. 河口断面の変化の最終結果は図-7に示されている.現 地計測の結果と計算結果を比較すると,現地計測では河

図-7 洪水後の河口断面形状の計算結果と現地計測の比較 河口から上流方向を望んだ断面

道中央部の局所的な深掘れが現れており,計算結果はそ れよりもやや右岸側での河床低下が顕著となっている. このような違いの原因については,現時点では不明であ るが,側岸浸食が計算に含まれていないことや計算の格 子サイズが河道中央の深掘れを表現するには大きすぎる ことも一因ではないかと思われる.ただし,地形変化が 終了した後の図の点線以下の河道の断面積は,計算結果 が2185㎡,現地計測が2145㎡と両者はほぼ一致した.

4. まとめ

本研究では、平面2次元の数値モデルによって洪水時 の河口砂州のフラッシュによる地形変化およびそれに伴 う水位上昇量の低減効果について定量的に把握すること ができることが分かった。今回対象とした平成14年の洪 水の場合、フラッシュが生じた場合、それが生じない場 合に比べて最高水位の差が2m程度となった。洪水前後の 河床断面積は計算と実測でほぼ一致した。一方、砂州の フラッシュが全く生じない場合には阿賀野川下流端の堤 防の天端高さとほぼ同じ高さまで水位が上昇することが 分かった。阿賀野川の河口は左岸側が空港滑走路端部、 右岸側が住宅街となっており、洪水氾濫が生じた場合、 大きな被害が生じる。この地域の治水安全を確保する上 で河口砂州のフラッシュは重要である。

本研究で用いた数値モデルでは、河口砂州のフラッ シュ現象を浮遊砂・掃流砂として表現した.横断方向の 河床形状の変化についてはやや現地と異なるが、本計算 で用いた程度の粗い格子としては満足できるものである. しかしながら、この計算方法では砂州の形状変化は没水 部のみであり、側岸侵食による水面上の砂州の崩落が含 まれていない、また、砂州に作用する動圧としての外力 が含まれていないなどの問題があると考えている.例え ばホースの先端に取り付けたノズル(河口砂州)を吹き 飛ばすような圧力としての外力であり,今後そのような 効果の河口砂州の挙動への影響の有無について検討して みたいと考えている.本論文では,移動床の計算方法の 詳細については述べていない.ここで用いた方法は,標 準的な計算方法であり,関根の解説書¹⁰に詳細が示され ている.現時点ではまだこの方面の研究が発展しつつあ る状況であり,敢えて移動床の計算方法に拘泥すること を避けた.また,河口砂州の崩壊による塩水くさびの遡 上の増加については現地観測によりその傾向が報告され ており,今後,数値モデルによる検討を行う予定である.

謝辞:本研究を実施するにあたり,河川懇談会(前座 長福岡捷二中央大学教授,座長:辻本哲郎名古屋大学教 授)の委員の方に多くの有益な助言を頂いた.ここに記 して謝意を表する.また,阿賀野川の河口に関するデー タを提供して頂いた国土交通省北陸地方整備局阿賀野川 河川事務所(野田猛所長,向島副所長,酒井優調査課長, 酒向秀典調査係長)に謝意を表する.

参考文献

- 細山田得三,張瑞瑾,星野雄亮:河口砂州の生成に及ぼす 河川水と海岸波動の影響に関する基礎的数値実験,海岸工 学論文集,第52巻,pp.561-565,2005.
- 2)細山田得三,佐藤啓明,野田猛,酒井優,酒向秀典,洪水時における阿賀野川河口砂州のフラッシュ現象の再現に関する研究,河川技術論文集,pp. 73-78,2006.
- 3) 佐藤啓明:阿賀野川河口砂州のフラッシュ現象に関する数 値解析,長岡技術科学大学修士論文,2005.
- 4)科学研究費補助金基盤研究(B)(1)研究成果報告書:全日本 広域土砂収支評価,研究代表者田中仁,2005.
- 5) 佐藤智昭, Totok Suprijo, 真野明:河口砂州を有する主な河 川の最狭開口部平衡条件,海岸工学論文集,第51巻, pp. 526-530, 2004.
- 6)科学研究費補助金基盤研究(C)(2)研究成果報告書:河口および潟湖入り口における地形平衡条件に関する研究,研究 代表者真野明,2005.
- 7)長田信寿:一般座標系を用いた平面2次元非定常流れの数値 解析,水工学における計算機利用の講習会講義資料,土木学 会水理委員会基礎水理部会,pp.61-76,1999.
- 8) 細田 尚,長田信寿,村本嘉雄:移動一般座標系による開水路 非定常流の数値解析,土木学会論文集, No. 533/ II -34, pp. 53-56, 1993.
- 9) 岩垣雄一:限界掃流力の流体力学的研究,土木学会論文集, 第41号, pp. 1-21, 1956.
- 10) 関根正人:移動床流れの水理学,共立出版, 211p., 2005.

(2006.9.30受付)