固液混相流型粒子法による 排砂水路底面の摩耗過程のシミュレーション ABRASION PROCESS OF CONCRETE SEDIMENT-FLUSHING CHANNEL SIMULATED BY PARTICLE METHOD WITH TWO-PHASE-FLOW MODEL

五十里洋行¹•後藤仁志²•酒井哲郎³ Hiroyuki IKARI, Hitoshi GOTOH and Tetsuo SAKAI

¹学生会員 工修 京都大学大学院博士後期課程 都市環境工学専攻(〒 615-8540 京都市西京区京都大学桂) ²正会員 工博 京都大学助教授 工学研究科都市環境工学専攻(〒 615-8540 京都市西京区京都大学桂) ³フェロー 工博 京都大学教授 工学研究科都市環境工学専攻(〒 615-8540 京都市西京区京都大学桂)

Gravels and boulders cause a severe abrasion of a invert of concrete channel for removing depositted sediment in a reservoir. To understand the mechanism of abrasion is the key to design a channel and to make a maintenance plan of a channel. Although some experimental studies have been performed, it was difficult to measure the motion of gravels and boulders directly because of a highly-disturbed water surface. In this study, the 3D particle method with solid-liquid two-phase-flow model is applied to the flow in a concrete channel in which gravels and boulders are transported in a flow with a small relative depth. Detailed physical properties, a collision impact, an abrasion depth distribution, and so on, are estimated for the four different classes of particle diameters of sediment.

Key Words : abrasion, concrete channel, solid-liquid two-phase-flow model, 3D-MPS method

1. はじめに

ダム堆砂は単に貯水容量の低下を生じさせるのみでは なく、ダム下流域への土砂供給を著しく減じて、河床低 下や海岸浸食など広範囲の土砂収支に歪みをもらたす. 堆砂の抑制については、貯水池への流入土砂を直接カッ トする排砂バイパストンネルが最も効果的な対策として 注目されている.排砂バイパストンネルをはじめとする 排砂水路の材料には、コンクリートが用いられるが、バ イパスされる河川の流水断面と比較して相当に小さい断 面の排砂水路で、河川を通過していた流砂の大部分をフ ラッシュするため、コンクリートの摩耗が大きな問題で ある.

コンクリート製水理構造物の摩耗に関する研究は多数 存在するが(例えば,石田¹⁾),実在規模のコンクリー ト水路を対象としたものではなく,排砂バイパストンネ ルの設計のための知見としても必ずしも充分なレベルに はなかった.このような認識から,福岡ら²⁾は実在排水 路規模の大型コンクリート水路を用いて砂礫による水路 底面の摩耗過程を実測し,さらに、3次元個別要素法と 断面 2 次元流体解析を組み合わせたシミュレーションを 実施した³⁾.ただし、水流の解析は流水中に固定された 砂礫を想定して実施されており、流体・粒子相互作用は 動的にカップリングされていない(言い換えると、標準 的な two-way カップリングで必要となる固相・液相の 交互の収束計算を各々1ステップのみ実施したことに相 当する).

排砂水路の流況で特徴的なことは、相対水深が小さい ことである.既往の実験(例えば、福岡ら²)でも水深 20cm以浅の流れに最大粒径が10cmを越える混合砂が 投入されており、水理条件次第ではあるが最大粒径が水 面から露出するような流下形態も出現する.流砂水理学 的な観点から用いられてきた既往の混相流モデル(例え ば、後藤ら⁴)では、相対水深が大きい流れが対象とさ れ、自由水面と砂礫の直接的干渉は考慮されてこなかっ た.したがって、従来の数値流砂水理学的方法の延長で は、対象とする場の特徴である自由水面の影響を良好に 反映させることができず、不適切である.

そこで、本研究では、水塊の分裂・合体など複雑な自 由表面流の挙動の記述に適した粒子法に移動剛体要素と

して混合砂礫を導入した固液混相流のフレームワーク を構築し、排砂水路中の砂礫の運動特性に計算力学的 にアプローチする. 粒径別の路床へのインパクトや粒 径別の侵食量の空間分布など、混合砂礫によるコンク リート床侵食過程の物理的メカニズムを考える上で重 要な基礎情報がシミュレーションを通じて取得できる. 本研究は、激しい擾乱を伴う水面の存在故に画像解析 からも取得が困難な砂礫運動の物理特性が推定できる 点で, 既往の実験データを補強し, 排砂水路設計に寄 与する基礎データを得るためのツールとして有用であ る.

2. 数値解析の概要

(1) 固液混相流型粒子法

本研究では、二流体型の固液混相流モデル⁵を用 い、固相粒子を剛体連結モデル。によって連結させ ることにより、混合砂礫を取り扱う.

運動方程式は

$$\rho_l \frac{D\boldsymbol{u}}{Dt} = \left(-\nabla p_l + \rho_l \boldsymbol{v}_l \nabla^2 \boldsymbol{u}_l\right)_l - \boldsymbol{f}_{lsp,l} + \rho_l \boldsymbol{g}$$
(1)

$$\rho_s \frac{D\boldsymbol{u}}{Dt} = \left(-\nabla p_s + \rho_s \boldsymbol{v}_s \nabla^2 \boldsymbol{u} + \boldsymbol{f}_{colp}\right)_s + \boldsymbol{f}_{lsp,s} + \rho_s \boldsymbol{g} \qquad (2)$$

$$\boldsymbol{f}_{lsp,l} = -\left(-\nabla \boldsymbol{p}_l + \boldsymbol{\rho}_l \boldsymbol{v}_l \nabla^2 \boldsymbol{u}_l\right)_s \tag{3}$$

$$\boldsymbol{f}_{lsp,s} = \left(-\nabla \boldsymbol{p}_s + \boldsymbol{\rho}_s \boldsymbol{v}_s \nabla^2 \boldsymbol{u}_s\right)_l \tag{4}$$

である.ここに、 u_{i}, u_{s} :流速ベクトル、 p_{i}, p_{s} : 圧力、 ρ_{h}, ρ_{s} : 流体の密度, g: 重力加速度ベクトル, v_{m} : 動粘性係数である. fcolp は本研究で付加的に考慮し た反発力(詳細は次節に示す)である.添字 l,s は それぞれ液相および固相を示す.

一般に用いられている流水中の単一球の運動方 程式には、流体抗力項、Basset 項、Magnus 揚力項、 Saffman 揚力項等の外力項が式中に陽に示されるが、 固体球周囲の流れ場が充分な精度で解かれれば、こ れらの外力はモデル化なしに直接的に評価できる. これは粒子流 DNS⁷のコンセプトであるが、粒子法 における粒子の運動は周囲粒子との相互作用に基づ いて計算されているので,各粒子は周囲の圧力分布, 流速分布に支配されて運動することとなり. フレー ムワークとしては粒子流 DNS に他ならない.ただ し、本研究で扱う砂礫粒子に対する周囲流体の相対 的な解像度は,粒子流 DNS で扱われるもの(例えば, Kajishima and Takiguchi⁸⁾は流体解析に粒子径の 1/10 の格子間隔を採用している)と比較して解像度は低 く(流体粒子径は,最大の礫の1/5), DNSとして 充分な解像度を確保できてはいないので、より正確 な議論にはサブ粒子スケールのモデルを導入する必 要がある.

運動方程式の離散化については、標準の MPS 法

と同様である.計算領域に配置された多数の粒子(計 算点)において、個々の粒子の周囲に設定された影 響域内に含まれる粒子との粒子間相互作用として基 礎式の各項が離散化される. 非圧縮条件は、粒子数 密度を一定値 n。に保つことにより満足される.

粒子 i の圧力項および粘性項は、

$$-\frac{1}{\rho} \langle \nabla p \rangle_{i} = -\frac{1}{\rho} \frac{D_{0}}{n_{0}} \sum_{j \neq i} \left\{ \frac{p_{j} - p_{i}}{\left| \mathbf{r}_{ij} \right|^{2}} \left(\mathbf{r}_{ij} \right) \cdot w \left(\left| \mathbf{r}_{ij} \right| \right) \right\}$$
(5)

$$v \langle \nabla^2 \boldsymbol{u} \rangle_i = \frac{2v D_0}{n_0 \lambda} \sum_{j \neq i} (\boldsymbol{u}_j - \boldsymbol{u}_i) w (|\boldsymbol{r}_{ij}|)$$
(6)

$$\lambda = \sum_{j \neq i} w(|\mathbf{r}_{ij}|) |\mathbf{r}_{ij}|^2 / \sum_{j \neq i} w(|\mathbf{r}_{ij}|)$$
(7)
$$\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i$$
(8)

$$i$$
 (8)

と記述される $(D_0$: 次元数, r_i : 粒子 i の位置ベク トル)⁹. 粒子間相互作用の及ぶ範囲(影響球)は, 重み関数

$$w(r) = \begin{cases} \frac{r_e}{r} - 1 & for \quad r \le r_e \\ 0 & for \quad r > r_e \end{cases}$$
(9)

により規定される.また、粒子数密度は重み関数を用 いて.

$$\langle n \rangle_i = \sum_{j \neq i} w \left(\left| \mathbf{r}_{ij} \right| \right)$$
 (10)

として定義される.

(2) 反発モデル

MPS 法における粒子は計算点であるので、二流体 型の固液混相流モデルで扱う固相粒子は、粒子追跡 法等で扱う固体粒子とは異なり, 多数の粒子を剛体 結合して表現される.したがって、固相粒子・壁粒 子間の衝突においては, Saltation 計算のように仮想 反発面を考えた反発の法則によって反発後の粒子の 速度が定まるのではなく, 固体を構成する粒子の中 で表層に存在する粒子と固定壁を構成する粒子の圧 力値が上昇して相互に反発力を発現することで反発 過程が計算される. そこで, 剛体連結モデルによっ て連結された固相粒子群(=礫)と壁粒子の間に付 加的な力を作用させて反発の法則と等価な反発速度 が得られるように調整する.具体的には以下のよう である.

図-1に概念図を示す. 礫(図中の茶色)が壁粒子(肌 色)に接近し、赤色の壁粒子と接触したとき、各壁 粒子の持つローカル座標(橙色の矢印は鉛直方向く を示す)での礫の重心の鉛直速度成分 urg に比例し た力をく方向に与える.

$$f_{\zeta} = -(1 + \alpha_{res})u_{re\zeta} / \Delta t \tag{11}$$

$$f_{colp} = T_{Bi}^{-1} \begin{pmatrix} 0\\0\\f_{\zeta} \end{pmatrix}$$
(12)

ここに、 f_{ζ} :反発力の ζ 軸方向成分、 Δt :計算時間 間隔、 T_{Bi} :壁粒子 i の持つローカル座標系への変換 行列である。 α_{res} はチューニングパラメータであり、 静水中の単一固体粒子の落下計算において反発係数 が 0.5 となるように $\alpha_{res}=2.4$ と設定した。

(3) 砂礫衝突による摩耗量の評価

MPS 法の洗掘計算の方法としては後藤ら¹⁰によ る簡易洗掘モデルがあるが,このモデルでは,水流 の河床に対する剪断力と衝撃力が閾値を超えると, 河床表面壁粒子のフラグを固定粒子から移動粒子 へと変更させて粒子を水流中に pick-up し,洗掘現 象を模擬する.このモデルでは,洗掘深が粒径の整 数倍で評価されるので,最大洗掘深と比較して解像 度が充分に確保されなければ精度が良くない.本研 究で対象とする砂礫の衝突による摩耗現象は,水路 床が変動するという意味で洗掘と同様の現象である が,一回の礫との衝突で発生する摩耗量は移動床に おける洗掘深と比較して遥かに小さく,本研究で扱 う粒径では充分に解像度を確保できない.

そこで本研究では、固定粒子から移動粒子へのフ ラグ変更を用いて摩耗を表現するのではなく、礫と 衝突した固定壁に対して、その点に作用する力積に 応じて壁粒子の位置を下方に移動させた.こうする ことで粒子径以下の微細な変位を取り扱うことが可 能になる.式で表現すると、

$$\Delta z_i = -\alpha_{abr} \cdot M_{pk} \left(u'_{rgzk} - u_{rgzk} \right) \cdot d \tag{13}$$

となる. ここに, M_{pk} : 礫番号kの礫の質量, u_{rgd} , u'_{rgd} : 衝突前後の礫番号kの重心の速度のz成分, d: 粒子径である. 礫衝突による摩耗現象は, 長時 間かけて徐々に進行する現象であるが, MPS 法の 計算負荷を考えると実時間スケールでの計算の実行 は非現実的と言わざるを得ない. そこで, 福岡ら²⁾ の実験で計測された累積供給砂礫量に対する平均浸 食深の記録から約 20 時間の現象を物理時間 10.0 秒

図-2 計算領域

で再現することとし、摩耗量 Δz を調整するための チューニングパラメータ α_{abr}を 2.0 とした.例えば、 saltation 計算においても河床に存在する全粒子を追 跡するのではなく、代表粒子を追跡して粒子運動を 論じるように、本計算でも個々の粒子の衝突のイン パクトを割り増して摩耗の進行プロセスを模擬して いる(つまり、本計算で出現した礫を約 20 時間の 間に出現する礫の代表と見なしている).代表粒子 追跡のコンセプトは DSMC(Diret Simulation Monte Carlo)でも用いられており、この種の Lagrange 型 モデルでは一般的である.また、衝突による摩耗の 影響は、直接衝突した壁粒子だけでなく、その周囲 に含まれる壁粒子にも及ぶものとし、ガウス分布に 従って周囲壁粒子の摩耗量を算出した.

$$\Delta z_j = \Delta z_i \cdot exp \left\{ -(r/d)^2 / 2.0 \right\} \quad for \quad r \le r_{eabr} \tag{14}$$

なお,影響域の大きさについては, r_{eabr}=3.1d とした.

3. 排砂水路底面の摩耗過程

(1) 計算領域と計算条件

図-2 に計算領域を示す.用いた水路は,全長 10.3 m,勾配 1/20,水路幅 0.9 m であり,断面形状は流 下方向に一様で,水路中央が凹んでいる.水路勾配, 水路幅,水路断面形状に関しては福岡ら²⁾の水理実 験と同様に設定した.上流端には可溶性移動壁¹¹⁾ による流入境界が設置されており,流量 Q=0.5 m³/s

表-1 礫モデル

	固相粒子数	換算礫粒子径 (cm)	配合割合 (%)
•	1	2.481	40
8	8	4.963	30
	32	7.878	20
	81	10.74	10

図-3 瞬間像

を水路に供給した.水路下流端に達して落下した粒子は消去される.粒径は均一で 0.02 m,粒子数は約400,000 個である.

(2) 礫モデル

表-1に礫モデルを示す. MPS 法の粒子は球で描かれ るが、あくまで計算点であり、粒子一個の体積は、 $V=d^3$ とされる¹²⁾. したがって礫の粒径には、粒径を構成する 固相粒子の個数×体積を球の体積に換算した場合に得 られる球の直径を用いる. 粒径階は4種類で、粒度 構成は表-1のようであり、平均粒径は5.13 cm、比 重は $\rho_s/\rho_l=2.65$ である. 礫は上流端より 1.5 m 下流側 の水面直上から投入される. ただし、奥行き方向の 位置は水路幅を等分割する5地点を順番に変更する. 供給速度は福岡ら²⁾ と同様で 0.88 m³/min である.

図-4 摩耗侵食量分布

(3) 計算結果

図-3に瞬間像を示す.茶色が礫で,青色が水粒子 を示す.左図は水路上方からのアングルで,右図下 は水路横から映したものであり,それぞれ水中の礫 の様子を見易くするために水粒子を小さく表示して いる.右図上は水路中央断面を示しており,水面の 様子を示すため,水粒子を認識し易い大きさで表示 している.左図より,比較的粒径の大きい礫は水路 中央を流下し,粒径の小さな礫はある程度横断方向 に分布して移動している.これは,凹状の底面形状 によりすべての礫は水路中央へと集まるが,比較的 小さい礫は大きい礫との衝突により側壁方向へ跳ね 返されるためと考えられる.また,右図から摩耗に よって生じた凹凸と衝突しつつ礫が流下し,水面で は活発に飛沫が飛散する様子が分かる.

図-4 に摩耗侵食量分布を濃淡図で示す.水路中央 で侵食が顕著で,側壁付近ではあまり顕著な侵食は 見られない.また,水路中央に注目すると,周期的 に色の濃い(侵食が激しい)箇所が出現し,その周 期は 0.6-0.7 m 程である.これは次節で後述する粒径

図-6 粒径別摩耗侵食量分布

の大きな礫の平均 Saltation 長とほぼ対応している. このような侵食形状は実験でも見られており,定性 的に妥当な結果といえる.図-5に,上流端から7.0-8.0 m区間における侵食深を,長さ方向に平均した平均 断面形状を示す.時間とともに,特に水路中央で侵 食が進んで行く様子が分かる.実験では側壁近くも 侵食されるが,本研究では,ほぼ水路中央のみとなっ た.

図-6に t=8.5 s での粒径別の累積侵食量を濃淡図で 示す.これを見ると,水路の侵食に主として寄与し ているのは比較的粒径の大きな礫であることがわか る.最小粒径の礫においては他の礫と同様の濃淡設 定では有為な差が生じず,白色表示となるので,ス ケールを変更した図を併示した(図-6の左枠内). 他の礫と比較して侵食への寄与は小さいが,侵食範 囲が比較的広範囲に分布しており,横断方向への掃 流力が大きい.図-7 は,水路床に作用した粒径別の 力積の平均値をプロットしたものである.粒径の増

加に対してほぼ線形に推移しており、この図からも 侵食に影響を及ぼすのは比較的大きな礫のみである とわかる.このように粒度分布を持った礫群を含む 流れで、粒径別で侵食への影響を精査することは実 験では不可能であり、重要な物理特性の1つが本シ ミュレーションによって初めて明らかとなったと言 える.

(4) Saltation 特性

図-8 と図-9 に礫の平均 Saltation 長と平均飛高を示 す. 図中には Euler-Lagrange カップリングによって Saltation の運動を予測したシミュレーション結果¹³⁾ を併示する.「Clear」は流れ場を清水流で解いた計算結果であり,「Sediment-Laden」は粒子混入による 負の生成項が流れ場の計算に付加された場合(つまり,混相流場)の計算結果である.また,図-9には, 関根・吉川¹⁴⁾による実験結果も併示する.

掃流力 τ_∗が大きい 2 粒径 (小粒径) は Saltation 長・ 平均飛高ともに上方に大きく外れる. この 2 粒径に おいて Saltation 長が長くなるのは,水路の断面形状 の影響と考えられる.水路中央が凹んでいるため, 水路中央での礫密度が高くなる.粒径の小さい礫は 着底する以前に大きい礫と衝突して上方に再上昇す ることが多く,飛距離が相対的に長くなる.

一方, τ_{*}の小さい2粒径(大粒径)においては平 均飛高が実験を下回る結果となった. これは粒径に 対して水深が相対的に浅く、礫の運動が水面と干渉 するためと考えられる.通常, Saltation の運動を計 算するときは、水面は充分に高い位置にあることを 前提としている.しかし、本計算では水深は、最 大粒径の2倍程しかなく、粒子運動が水面の影響 を大きく受けることが予想される. つまり, 乱れの 減衰作用と同時に水面が緩やかな壁として作用し, saltation の飛高が制限される.相対水深が小さい流 れ場における砂礫の流送過程自体が、流砂水理学上 の重要な課題であるが、ここで示された本研究の方 法の成果は、この種の問題にも発展が可能であると 考えている.ただし,流砂過程の議論を深めるには, 種々の水理条件における系統的な計算の実施が不可 欠で、今後の検討としたい.

4. おわりに

本研究では、固液二相流型粒子法に底面反発モデ ルと摩耗モデルを新たに加え、礫群の流下に伴う水 路床の摩耗・侵食現象を計算した.本研究で開発し た摩耗モデルで、従来の侵食モデルでは記述できな かった粒径以下の侵食についても取り扱いが可能と なった.

本研究で対象とした排砂バイパストンネル内の礫 群の運動機構については,水深の浅い流路を大小の 礫群が高密度で流れる計算力学的に非常に解析が困 難な場であり,これまでにはシミュレーションが実 施された例はなかった.本研究では,粒子法の導入 によって流れ場と礫の運動を同時に解いて,床面の 侵食も充分な空間解像度で追跡することが可能であ ることが明らかとなった.この種の現象解析の有用 性の一端が示されたと言えるだろう. 参考文献

- 石田 毅:ダム排砂設備の流下砂礫による摩耗・損 傷に関する水理学的研究,土木学会論文報告集,第 334 号,1983.
- 福岡捷二,篠原康寛,正木丈也,重村一馬,藤堂正樹, 岡田将治,斉藤一正:排砂水路底面の摩耗進展機構の 実験的検討,水工学論文集,第48巻,pp.1135-1140, 2004.
- 3) 福岡捷二,渡邊明英,篠原康寛,山下 翔,斉藤一正: 高速で多量に流下する礫群の運動機構と床面摩耗量の推 算,河川技術論文集,第11巻,pp.263-268,2005.
- 後藤仁志, Abbas Yeganeh-Bakthiary, 酒井哲郎: 混相 流モデルと個別要素法の融合による高濃度掃流層の数値 解析, 土木学会論文集, No. 649, pp.17-26, 2000.
- 後藤仁志・Jørgen Fredsøe:Lagrange 型固液二相流モデ ルによる海洋投棄微細土砂の拡散過程の数値解析,海岸 工学論文集,第46巻, pp.986-990, 2001.
- Koshizuka, S., Nobe, A. and Oka, Y.: Numerical analysis of breaking waves using the moving particle semiimplicit method, *Int. J. Numer. Meth. Fluids*, Vol. 26, pp.751-769, 1988.
- 7) 後藤仁志:数値流砂水理学,森北出版株式会社,p215, 2004.
- 8) Kajishima, T. and Takiguchi, S.: Interaction between particle clusters and fluid turbulence, *Int. J. Heat and Fluid Flow*, Vol. 23, Issue 5, pp.639-646, 2002.
- Koshizuka, S. and Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid, *Nuclear Science and Engineering*, Vol. 123, pp.421-434, 1996.
- (後藤仁志,林 稔,織田晃治,酒井哲郎:越流水による 河川堤防侵食過程のグリッドレス解析,水工学論文集, 第46巻, pp.439-444, 2002.
- Gotoh, H., Shibahara, T. and Sakai, T.: Sub-particle-scale turbulence model for the MPS method -Lagrangian flow model for hydraulic engineering-, *Comp. Fluid Dyn. J.*, 9-4, pp.339-347, 2001.
- 12) 越塚誠一:粒子法, 丸善, p144, 2005.
- 後藤仁志・辻本哲郎・中川博次: PSI- セルモデルに よる Saltation 層の解析,海岸工学論文集,第39巻, pp.266-270, 1992.
- 14) 関根正人・吉川秀夫:掃流砂の停止機構に関する研究, 土木学会論文集,第 309 号, pp.105-112, 1988.

(2006.9.30 受付)