山腹斜面における パイプーマトリクス流連成モデルの開発 DEVELOPING A COUPLED MODEL OF PIPE-MATRIX SUBSURFACE FLOW

安 賢旭¹・市川 温²・堀 智晴³・椎葉 充晴⁴

Hyunuk AN, Yutaka ICHIKAWA, Tomoharu HORI and Michiharu SHIIBA

¹学生会員 京都大学大学院工学研究科(〒 615-8540 京都市西京区京都大学桂) ²正会員 工博 京都大学大学院工学研究科 助手(〒 615-8540 京都市西京区京都大学桂) ³正会員 工博 京都大学大学院工学研究科 助教授(〒 615-8540 京都市西京区京都大学桂) ⁴正会員 工博 京都大学大学院工学研究科 教授(〒 615-8540 京都市西京区京都大学桂)

Over a couple of past decades, many studies have reported the presence of soil pipes in hillslopes and its significant influences on rainfall-runoff processes. However there is no general simulation techniques to analyze pipe flow machanisms because of its complex flow dynamics and interation with water in the surrounding soil. This study proposed a numerical simulation model which combined a slot model with a two-demensional saturated-unsaturated subsurface flow model. To validate the model, three patterns of simulations (no pipe, an open pipe and a closed pipe) were conducted and showed reasonable agreement with the experiments.

Key Words : pipe flow, matrix flow, slot model, Richards' equation

1. はじめに

これまでに行われた観測により,山腹斜面土層内に おいて,地表面とほぼ平行に,パイプと呼ばれる連続 した空洞が存在することが多く報告されている.この パイプの形成原因は,小動物の活動,植物恨の腐食,地 下水による浸食などが考えられている.パイプは斜面 からの雨水流出,表土層安定性に影響し,斜面の崩壊, 地形発達などの要因の一つとして考えられている.パ イプが斜面からの雨水流出や表土層安定性に与える影 響及びパイプの諸特性は,野外観測や実験によって数 多く研究されており,その詳しい内容は以下の通りで ある¹⁾.

- パイプを通る雨水流が土層断面全体からの雨水流
 出に占める割合は、マトリクス部からの流出の割
 合より大きかった。
- パイプ内の水理特性は、管路における Darcy-Weisbachの式に近似的に従っていた。
- パイプは斜面の水を効果的に排水し,水面の上昇 を抑制する効果があるため,間隙水圧の低下,斜 面安定に寄与する.
- 下流端が閉まっているパイプ (closed pipe)の下流 端付近に水の集中が起こる.そのため,土層の間 隙水圧が増加し,斜面崩壊の要因となる.

大きな降雨時には、パイプからの土砂の排出があるため、パイプが生成されたり、パイプが破壊されることがある、

このようにパイプ流が山腹斜面の水理水文学的特性 に与える影響は非常に大きい.山腹斜面に降った雨水 は,まず小規模の空隙を有する土壌部(マトリクス部) に吸収され,マトリクス部は徐々に飽和していく.マト リクス部の飽和がある程度進むと,マトリクス部から パイプ部への流入が始まり,パイプ流が発生する.パ イプ部に流入した雨水は,はじめは開水路状態で流れ るが,流量が増えていくと,やがて満管状態で流れる ようになる.満管状態で流れるパイプ流の圧力が高まっ ていくと,パイプ部からマトリクス部への逆浸透も発 生する.このように,パイプ部の流れとマトリクス部 の流れは、相互に密接に関連しているが、これらの流 れを連成して計算する手法は,いまだ十分には開発さ れておらず,パイプの部分を透水係数が大きい土層と みなし計算をするもの $^{2)}$,パイプ部の流量をManning式で求めたもの³⁾などのいくつかの簡略的な計算手法が 提案されているにとどまっている、本研究では、パイ プ部の流れを計算するスロットモデルとマトリクス部 の流れを計算する飽和不飽和流モデルを結合し,山腹 斜面土層内の流れを詳細に解析できるモデルを開発す ることを目的とする.

- 2. モデルの構成
- (1) モデルの基本的な考え方

パイプ部とマトリクス部の流れを個別の系とみなし, パイプ部はスロットモデル,マトリクス部は飽和不飽 和流モデルで計算する.スロットモデルは下水管網の 流れの計算にしばしば用いられるものであり,仮想的 なスロットを管の上部に付け加えることにより満管の 場合でも流れを開水路流として扱うことができるモデ ルである⁴⁾(図-1参照).両モデルは次のようにして 互いに影響を与えながら計算を進めていく.

- (i) パイプ部の水理水頭を境界条件として, 飽和不飽和 流モデルでマトリクス部の流れを計算する.
- (ii)の計算結果に基づいて,パイプーマトリクス間の流出入量を計算する.
- (iii) (ii) で求めた流出入量を側方境界条件としてスロットモデルでパイプ部の流れを計算する.
- (iii) で求めたパイプ部の水理水頭を境界条件として,再び(i)の計算をする.
- (v) (i)~(iv)の手順を繰り返す.

両モデルの開発及び結合は OHyMoS⁵⁾を利用した.以下,それぞれのモデルについて説明する.

(2) 飽和不飽和流モデル

土壌中の飽和不飽和流れは,(1)式に示す Richards 式で記述される.本来この式は3次元的に書かれるべ きものであるが,本研究では簡易的に鉛直2次元で取 扱うことにし, *x* 軸を斜面に平行な方向に,*z* 軸を斜面 に垂直な方向とした.

 $\frac{\partial\theta}{\partial t} = \frac{\partial}{\partial x} \left[K \left(\frac{\partial\psi}{\partial x} + \sin\omega \right) \right] + \frac{\partial}{\partial z} \left[K \left(\frac{\partial\psi}{\partial z} + \cos\omega \right) \right]$ (1)

ただし, θ :体積含水率, ψ :圧力水頭,K:透水係数, ω :x軸と水平面との角度である.

(1) 式を修正 Picard 法⁶⁾によって差分化し, 飽和不 飽和流の計算を行う.ただし, コントロールボリュー ム境界での透水係数の算出法として風上差分法の考え 方を応用した上流法⁷⁾を用いた.コントロールボリュー ム*i*,*j* と*i*+1,*j*の境界の透水係数を算出する式を次に 示す.

$$K_{i+\frac{1}{2},j} = \begin{cases} K_{i,j} & (\phi_{i,j} \ge \phi_{i+1,j}) \\ K_{i+1,j} & (\phi_{i,j} < \phi_{i+1,j}) \end{cases}$$
(2)

ただし, $\phi_{i,j}$ はコントロールボリュームi,jの水理水頭である.

(3) スロットモデル

これまでパイプ流を解析する様々な数値計算モデル が提案されてきた.例えば,パイプの部分を透水係数が

大きい土層とみなし計算をするもの²⁾,パイプ部の流 量を Manning 式で求めたもの³⁾ などがある.しかし, これらのモデルは,パイプ流を簡略化して取り扱って いる.

本研究では,パイプを流れる水の解析を開水路と管路を区分することなく統一的に行うためにスロットモデルを用いた.スロットモデルでは次のような仮定を設ける.

- (i) スロット断面は管路部分と一体の流水断面として作用する.したがって,その断面平均流速は管路部分のそれと等しい.
- (ii) スロット断面は流れに対して摩擦抵抗を及ぼさない.すなわちスロット壁面は潤辺には含まれない.

本研究では,パイプは *x* 軸に平行な方向であると仮 定する.スロットモデルの基礎式は,次のような一般 的な開水路の運動方程式及び連続式である.

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q^2}{A}\right) + gA\cos w \frac{\partial h}{\partial x}$$
(3)
$$-gAS_0 + gAS_f - \frac{1}{2}\frac{Q}{A}q = 0$$

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} - q = 0$$
(4)

ただし,h:管の底部から測った水深,g:重力加速度, Q:流量,A:面積, $S_0(=\sin w)$:水路勾配, S_f :摩擦 勾配,q:横流入量である. S_f は次の式で表わす.

$$S_f = \frac{n^2 Q |Q| s^{\frac{4}{3}}}{A^{\frac{10}{3}}} \tag{5}$$

ただし, n: manning の粗度係数, s: 潤辺である.(3) 式の第6項と(4)式の第3項は,マトリクス部からパ イプ部に水が垂直に流入することを想定した横流入項 である.(3),(4)式を陰型差分スキームで展開してパ イプ部の計算を行う.

このとき,差分式の中に $\partial A/\partial h$, $\partial s/\partial h$ を含む項が あり, hが0に近づくと項が不定となり,計算ができな くなる.それを防ぐため,管の断面を完全な円ではな く,図-2のように仮定した.そうすることにより,次

図-2 パイプ断面と水深:太線はパイプ断面を表わす

のような式が成り立つ.

$$h_t = \frac{D}{2} \sin \frac{\theta_t}{2} \tan \frac{\theta_t}{2}, h_f = \frac{D}{2} \left(\frac{1}{\cos(\theta_t/2)} - 1 \right),$$

$$A_f = \frac{D^2}{8} \left(\theta_t - \sin \theta_t \right), A_t = \frac{h_t^2}{\tan(\theta_t/2)},$$

$$A_p = \frac{D^2}{8} (2\pi - \phi_p - \sin \phi_p)$$
(6)

$$(0 \le h < h_t)$$

$$A = \frac{h^2}{\tan(\theta_t/2)}, \frac{\partial A}{\partial h} = \frac{2h}{\tan(\theta_t/2)},$$

$$s = \frac{2h}{\sin(\theta_t/2)}, \frac{\partial s}{\partial h} = \frac{2}{\sin(\theta_t/2)}$$
(7)

 $(h_t \le h < h_p)$

$$A = \frac{D^2}{8}(\phi - \sin\phi) + A_t - A_f, \frac{\partial A}{\partial h} = \frac{D}{2}\frac{1 - \cos\phi}{\sin(\phi/2)},$$
$$s = \frac{D}{2}\left\{2\tan\frac{\theta_t}{2} + \phi - \theta_t\right\}, \frac{\partial s}{\partial h} = \frac{2}{\sin(\phi/2)}$$
(8)

 $(h_p \le h)$

$$A = Bs(h - h_p) + A_p + A_t - A_f, \frac{\partial A}{\partial h} = Bs,$$

$$s = \frac{D}{2} \left\{ 2\tan\frac{\theta_t}{2} + \phi_p - \theta_t \right\}, \frac{\partial s}{\partial h} = 0$$
(9)

ただし,Bs:スロット幅,及び θ_t はパラメタとして与える.

- 3. 適用および考察
- (1) 概説

本研究では、内田ら⁸⁾の人工パイプを用いた実験デー タを利用してシミュレーションを行った.内田らの実 験条件をまとめて次に述べる.

実験条件 長さ 70cm,幅 7.3cm,勾配 15 度の水路に, 10cm の深さで標準砂を充填した.パイプはアク リルパイプ (外径 10mm, 内径 8mm, 長さ 30cm) の側面に穴 (直径 2mm)を 2cm 間隔で 4 方向にあ けたものに、さらしをまいたものを利用した、パ イプの上流端は砂の流入を防ぐためにシリコンで 封鎖した.斜面上流端に接しているタンクに定量 (0.5g/sec) の水をポンプで加えて,下流端では-定の水深 (3cm)を保つようにした.流量及び水面 形が定常になるまで給水した.斜面底面からパイ プの中心までの高さは 1cm になるようにした.パ イプは二通りの方法で埋設した.一つは斜面の下 流端とパイプの下流端が一致するように埋設した もので,これをオープンパイプと呼ぶ.もう一つ はパイプ下流端が斜面の下流端より 15cm の地点 になるように埋設したもので,これをクローズド パイプと呼ぶ(図-3参照).

本研究では上記の実験条件を再現するようにモデル を適用した.すなわち図-4 に示すように,飽和不飽和 流モデルとスロットモデルを結合した.格子の大きさ $(\Delta x, \Delta z)$ は 5mm とし, x 軸の方向は斜面と平行にし て, z 軸方向は斜面と垂直にした.また, z 方向の格子 二つ分でパイプを表わすようにした.

 $\theta - \psi$ 関係, $K - \psi$ 関係については, Kosugi ^{9),10)} を 参考にして次式を用いた.

 $(\psi \ge 0)$

$$\begin{aligned} \theta &= \theta_s \\ K(\psi) &= K_s \end{aligned} \tag{10}$$

 $(\psi < 0)$

$$\frac{\theta_s - \theta_r}{\theta - \theta_r} = Q \left[\frac{\ln(\psi/\psi_m)}{\sigma} \right]$$
$$K(\psi) = K_s \left\{ Q \left[\frac{\ln(\psi/\psi_m)}{\sigma} \right] \right\}^{0.5} \left\{ Q \left[\frac{\ln(\psi/\psi_m)}{\sigma} \right] + \sigma \right\}^2$$
(11)

$$Q(x) = (2\pi)^{-0.5} \int_{x}^{\infty} \exp(-u^2/2) du \qquad (12)$$

 $heta_s, K_s$ などの値については 表-1 に示す値²⁾を用いた. またスロットモデルの計算を安定化させるため,パイ プの上端から常に一定の流量を与えるようにした.

図-3 パイプを埋設したモデルの概略図

図-4 両モデルの連成

θ_s	0.368
K_s	$0.000223 { m m/s}$
θ_r	0.044
σ	0.363
ψ_m	-52.5cm H ₂ O
C	0.95933
Bs	$10^{-6} {\rm m}$
θ_t	5°

(2) シミュレーション条件

シミュレーションはパイプなしの場合と,オープン パイプの場合,クローズドパイプの場合の三通りを行っ た.パイプなしの場合は,飽和不飽和流モデルのみでシ ミュレートし,オープンパイプとクローズドパイプの 時は,両モデルを結合したモデルでシミュレートした. マトリクス部の境界条件として,下流端が水に浸かって いる格子の圧力水頭を固定し,上流端も同様にして圧力

図-5 実験とシミュレーションの水面形の比較: (a) パイプな し, (b) オープンパイプ, (c) クローズドパイプ

水頭の値を与えた.パイプ部の下流端については,オー プンパイプの時は水深を与え,クローズドパイプの時 は流量が0になるようにした.上流端については,前述 したよう微小流量を与えた.その量は最初は 1.0×10^{-2} (cm³/s)とし,10分経過後は 1.0×10^{-3} (cm³/s)とし た.行ったシミュレーションは3時間分行ったが,3時 間後のパイプの下流端での流量は 4.9×10^{-3} (cm³/s) だったので,この時刻,流量がパイプ流の流量に及ぼ す影響は約2% 程度である.

(3) 水面形の比較

パイプなしの場合,オープンパイプの場合,クローズ ドパイプの場合,それぞれについて実験とシミュレー ションの水面形を図-5に示した.(a)パイプなしの場 合,(b)オープンパイプの場合,(c)クローズドパイプ

図-6 下流端から 65cm 地点での水面変化:(青-実験,赤-シ ミュレーション)

の場合であり, 三ケースとも上側の図が実験の結果で あり, 三ケースとも下側の図がシミュレーションの結 果である.

まず,パイプなしの場合の水面形を比較してみると, シミュレーション結果は実験結果とおおむね一致して いる.下流端に少量の水が貯まっている状態から上流 端より水が流入し,水面形が時間とともに上昇してい く様子が再現されている.ただし,上流端の付近でシ ミュレーションの方が水面が少し高くなっている.

オープンパイプの場合の水面形を比較してみると,中・ 上流側はよく一致しているが,下流側の水面形はやや 大きい違いが見られる.実験では時間の経過と共に下 流側の水面が上昇しているが,シミュレーションでは あまり上昇していない.このことからはシミュレーショ ンで用いたパイプのパラメタであるシェジーの係数 C の値が実験のパイプに対する値より大きくパイプ部の 流速を大きく算定し過ぎたと推測される.今回のシミュ レーションで用いた C の値は北原¹⁾を参考にして設定 した値であり,実験で用いられたパイプの値と比較し て上記の推測を検討する必要がある.

クローズドパイプの場合は,オープンパイプの場合 と同様に上流側に水位が上がることに伴う下流の水位 の上昇が見られない.その理由としてはオープンパイ プの場合と同様にパイプ部の流速の大きさがその理由 であると考えられる.パイプ部の流速が大きいためパ イプ付近の水面が上昇していないと予想される.また, 上流端の水位を上げてもパイプ部に水面があまり上昇 していないため,パイプ部からマトリクス部に水が逆 流入する地点が実験よりもシミュレーションの方で下 流になっていると考えられる.

いずれのケースにおいても,実験とシミュレーショ

ンの水面形は完全には一致していないが,パイプなし, オープンパイプ,クローズドパイプ,それぞれの場合の の特徴的な流況が表現できている.上記の三通りの水 面形を比較してみると,パイプなしの時の水面が一番 高く,その次にクローズドパイプ,オープンパイプとい う順になっている.パイプ部の上流側付近では水位が 下がり,パイプの下流端からは上昇している.クロー ズドパイプの時,下流端から15cmの地点にパイプの 下流端があるので,その付近で局所的に水面が高くなっ ていることが確認できる.

下流端から 65cm の地点の水面の変化をプロットした ものを図-6 に示す.青の線が実験の結果であり,赤の 線がシミュレーションの結果である.比較してみると, オープンパイプの時とクローズドパイプの時はよく-致しているがパイプなしの時はシミュレーションの方 が少し水面が高くなっている.その理由は現時点では 明かではなく,今後検討する必要がある.下流端の水 位を固定しているので,斜面上流側の水面が高いほど 斜面全体の透水性が悪いことを意味する.したがって, パイプなし,クローズドパイプ,オープンパイプの順に 透水性が悪いことが確認できる.

(4) 流速ベクトルについて

図-7 は上から順番にパイプなし,オープンパイプ, クローズドパイプの場合のマトリクス部の流速ベクト ルをプロットしたものである.パイプなしの場合を見 てみると上流端から下流端まで流速ベクトルがおおむ ね地面と平行で一様に流れていることがわかる.オー プンパイプの場合を見てみると,パイプより上流側で は流速ベクトルが地面と平行に一様にパイプなしの場 合と同様になっているが,パイプより下流側では流速 ベクトルの向きが変化し,マトリクス部を流れる水が 次第にパイプ部へと集められていく様子が再現されて いる.クローズドパイプでは,パイプの下流端以外の 部分ではマトリクス部から水が流入し,パイプの下流 端でパイプ部からマトリクス部へと水が流出していく 様子を確認できる.

4. 終わりに

本研究ではスロットモデルと飽和不飽和流モデルを 結合することによって,山腹斜面の土層内の流れ,特に パイプ流とマトリクス部の流れの相互作用を解析でき るモデルの構築を目指してきた.これまでにもパイプ 流を解析するモデルはいくつか提案されてきたが,そ のほとんどがパイプ部の流れを簡略化して計算してい た.本研究ではスロットモデルを使ってパイプ部の流 れを計算することにした.この方法の利点は,パイプ

図-7 流速ベクトル:(a) パイプなし,(b) オープンパイプ,(c) クローズドパイプ

部の流れを開水路状態・管水路状態の区別をすること なく計算できるところにある. 飽和不飽和流モデルは, 現時点は鉛直2次元となっているが,3次元のモデル に拡張しても同様にしてスロットモデルとの結合が可 能である.また,スロットモデルの底面の形状は完全 な円ではなく鋭突な形に修正して,パイプ部の水量が 少ない時の数値計算を行いやすくした.両モデルを連 成したモデルを実験水路に適用し,実験結果とシミュ レーション結果を比較したところ,シミュレーション と実験から得られた水面形はおおむね一致した.ただ し、オープンパイプとクローズドパイプの場合におい て,実験ではパイプの下流端で時間とともに水面が上 昇する現象が見られるが,シミュレーションではその 現象を再現することができなかった.その理由として は,シミュレーションにおいてパイプ部の流速が実験 での値よりも大きく算定されていることが考えられる.

以下に今後の課題をまとめる.第一に,スロットモデ ルで数値計算を安定化させるために,常に上流端から 一定の微小流量を与えている.本来この流量は存在し ないものであり,スロットモデルで安定的に計算を行 うことができるようモデルを改良する必要がある.第 二に,本研究で作成した飽和不飽和流モデルは,鉛直 2次元のモデルとなっている.しかし,実際の流れは3 次元的であることから,より正確に山腹斜面の流れを シミュレートするためには3次元の解析が必要である と思われる.さらに,マトリクス部とパイプ部の水の 出入りも2次元的に計算しているが,これも3次元的 に取り扱う必要がある.最後に,現実の山腹斜面に見 られるパイプの分岐・接合などより複雑な土層構造に も対応できるようモデルを改良する必要がある.

参考文献

- 1) 北原 曜:森林土壌におけるパイプ流の特性,水文・水資 源学会誌, Vol. 5, No. 1, pp. 15-25, 1992.
- Kosugi, K., T. Uchida and T. Mizuyama: Numerical calculation of soil pipe flow and its effect on weter dynamics in a slope, Hydrological Processes, Vol. 18, pp. 777-789, 2004.
- 3) 堤 大三・宮崎 俊彦・藤田 正治・Roy C. SIDLE: パイ プ流に関する数値計算モデルと人工斜面実験による検証, 砂防学会誌, Vol. 58, No. 1, pp. 20-30, 2005
- (4) 渡辺 政広・江頭 剛治・室田 明:取付管の調節効果を考慮した下水管網内の遷移流計算法,土木学会論文集,第411号/II-12, pp. 81-90, 1989.
- 5) 高棹 琢馬・椎葉 充晴・堀 智晴・立川 康人・市川 温:流 出系の構造的モデル化システムについて,京都大学防災 研究所年報,第 38 号, B-2, pp. 381-394, 1995.
- 6) Celia, M.A., Bouloutas, E.T. and Zarba, R.L.: A general mass-conservative numerical solution for the unsaturated flow equation, Water Resources Research, Vol. 26, No. 7, pp. 1483-1496, 1990.
- 7) 白木 克繁:山腹斜面を対象とした粗い空間刻みによる浸 透数値計算法の提示、水文・水資源学会誌、Vol. 11, No.
 6, pp. 586-598, 1998.
- 8) 内田 太郎・小杉 賢一朗・大手 信人・水山 高久:斜面土 層内のパイプが地下水面形に及ぼす影響に関する実験的 研究,日本林学会論文集,106,pp. 505-508, 1995.
- Kosugi, K. : Three-parameter lognormal distribution model for soil water retention, Water Resources Research, Vol. 30, pp. 891-901, 1994.
- Kosugi, K. : Lognormal distribution model for unsaturated soil hydraulic properties, Water Resources Research, Vol. 32, pp. 2697-2703, 1996.

(2006.9.30 受付)