融雪に起因する土砂災害のリスクモデル

RISK MODEL OF SEDIMENT HAZARD DUE TO SNOWMELT

川越清樹¹・風間聡²・沢本正樹³ Seiki KAWAGOE, So KAZAMA and Masaki SAWAMOTO

1学生生会員 修(環境科学)東北大学大学院環境科学研究科(〒980-8579 宮城県仙台市青葉区荒巻字青葉6-6-20) 2正会員 博(工)東北大学大学院環境科学研究科(〒980-8579 宮城県仙台市青葉区荒巻字青葉6-6-20) 3正会員 工博 東北大学大学院工学研究科(〒980-8579 宮城県仙台市青葉区荒巻字青葉6-6-06)

The Probability and the road damage due to sediment hazard caused by snowmelt were analyzed by use of the risk model. The risk model was applied by a multiple logistic regression analysis based on past hazard conditions. We set conditions of geology, relief energy and hydraulic gradient as the necessary variables. Hydraulic gradient was analyzed by infiltration analysis with consideration of snowmelt. Snowmelt conditions were obtained by SWE (Snow Water Equivalent) model. The Probability and the road damage in the Tohoku region are shown in map with 1km² resolutions. This map shows spatial-temporal risk distribution of sediment hazard.

Key Words : heavy snow year, probability, road damage, global warming

1.序論

日本列島で記録された2006年の豪雪は,交通,構造物, 人的に甚大な被害を与えた¹⁾.地球温暖化に伴う積雪量 減少²³³の一方で,北海道,北東北の突発的な積雪量の増 大が予測されている⁴⁾.積雪量変化に伴い増加の予測さ れる災害が土砂災害である.融雪の加速⁴⁵⁹に伴う急激な 地下水供給,積雪量減少に伴う雨滴の浸食によるガリの 過剰な発達⁶を原因に土砂災害の発生が懸念される.

降雨に起因する土砂災害の危険度の空間分布を示すモ デルが構築されている7899. 融雪に関する土砂災害の研 究は,積雪状況と災害の関係から雪害危険度を示す²⁾, 個別現象の危険度評価モデルの構築¹⁰⁾¹¹, 災害事例とそ の考察¹²⁾等を中心にし,危険度の空間分布を示すモデル が構築されていない.原因として,積雪情報を取得でき る観測所の不足が挙げられる.融雪現象は天候条件に依 存し,この条件は地形特性等で変化するため,広域に対 し緻密にデータ取得する必要がある.データ不足により 危険度の空間分布を示すモデルが構築できなかったと推 測される.一方,衛星画像の利用により積雪水当量と融 雪量の分布を推定するモデルが構築され¹³⁾,この成果が 土砂災害危険度の空間分布を示すモデルの構築に有用と 考えられる.本研究では,土砂災害の発生,非発生の実 績に対する融雪を含む水文条件,地質と地形条件を考慮 した土砂災害リスクモデルの構築を試みた.数値地図 データと融雪量分布を利用し,発生確率と社会基盤の経 済損失をセル解像度1km×1kmのマップに図化した.モ

デルは,地球温暖化に伴う降水変化による水文条件の変 化,地形発達および人為的な地形改変による地形条件の 変化といった将来予測される地球環境の変化も評価でき る.本論文では,土砂災害による被害事例の多い道路に ついて経済被害損失を解析した.土砂災害リスクの空間 分布の明示は,追跡調査,対策整備の必要な地域の抽出 に有用である.対象地域は,多積雪地帯で,融雪に伴う 土砂災害が頻繁に認められる東北地方全域とした.

2.データセット

融雪を含む水文条件,地質と地形条件,土砂災害の実績,道路密度の数値地図データを土砂災害リスクモデル に利用する.各データを以下に説明する. (1)水文データ

水文データに動水勾配を用いる.動水勾配の上昇は, パイピング現象に伴う斜面尻の土塊流出を促し,斜面不 安定化を助長させる¹⁴.数値地図データから擬似的な二 次元斜面を再現し,浸透解析を行い動水勾配が求められ る.浸透解析に国土数値情報KS-META-G05-54Mデータ の表層土壌,KS-META-G05-56Mデータの斜面傾斜度, 日融雪量分布データを利用する.以下に浸透解析方法, 融雪データの算定法を説明する.

a) 浸透解析方法

解析にRichardsの飽和不飽和浸透解析モデルを用いる. 地質の風化劣化の著しい日本列島は,地表面下の水が不 飽和状態で移動するため,不飽和を考慮した浸透解析が

	透水係数 Ks (cm/s)	飽和体積 含水率 s	残留体積 含水率 「	土壌 特性値	対応土壌 データ
礫質土	1×10 ⁻²	0.30	-	3	岩屑性褐 色低地
砂質土	1×10 ⁻³	0.40	-	3	褐色化,グ ライ,砂丘
シルト	1×10 ⁻⁴	0.45	0.05	5	黒ボク,ポド ゾル,森林, 湿性森林
粘土	1×10 ⁻⁵	0.50	0.10	20	泥炭

表-1 浸透解析土壌パラメータ

適する.浸透解析により得られる浸潤線から動水勾配が 求められる.浸透解析式は式(1)から式(3)に示す.式(1) はダルシー則と比水分容量 $C(\psi) = \partial \theta / \partial \psi$ をRichards式に 代入して導かれる.水頭 ψ と体積含水率 θ の関係に式 (2)に示す谷式¹⁵⁾,不飽和透水係数 K と透水係数 Ks と 体積含水率 θ の関係に式(3)に示す一般Kozeny式¹⁶⁾を用い る.表層土壌は礫質土,砂質土,シルト,粘性土に大別 する.表層土壌条件は表-1に示す.日融雪量は毎分の等 分配で浸透する条件を仮定した.この設定は実現象を再 現しないものの浸透による地域毎の特徴を区別できる.

$$C\frac{\partial\psi}{\partial t} = \frac{\partial}{\partial x} \left(K_x \frac{\partial\psi}{\partial x} - K_x \sin\alpha \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial\psi}{\partial z} - K_z \cos\alpha \right)$$
(1)

$$\theta = \left(\theta_r - \theta_s\right) \left(\frac{\psi'}{\psi_0} + 1\right) \exp\left(-\frac{\psi'}{\psi_0}\right) + \theta_r$$
(2)

$$K_{x} = Ks_{x} \left(\frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}}\right)^{\beta}, K_{z} = Ks_{z} \left(\frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}}\right)^{\beta}$$
(3)

ここで, θ :体積含水率,t:時間,V:流速,K:不飽杯透水係数,T:単位時間の蒸発散, ϕ :全水頭, θ_s :飽杯体積含水率, θ_r :残留体積含水率,C:比水分容量, ψ_0 :C が最大となる圧 力水頭 ψ , ψ' : $\psi < 000時 \psi$ かつ $\psi \ge 000時0$, β :土壌固 有定数,Ks:飽杯透水係数である.添字はx,z方向を示す. b) 融雪量データ

本研究で用いた積雪水当量推定モデル¹³⁾は,従来のモ デル¹⁷⁾と比較すると,広域かつ時系列の積雪情報を把握 できる特徴をもつ.積雪水当量は1.1km×1.1kmのセル解 像度で示されるため,解像度100m×100mに細分化し, 緯度経度情報をあてはめることでセル解像度1km×1km に補正した.積雪水当量は日当たりの降雪量 SF と融雪 量 SM から算定される.融雪量の推定に式(4)に示す degree-day法を用いる.融雪量は,気温の他に日射量等 の気候因子も考慮し,熱収支計算で求めることが望まし い.しかし,広域に対するこれらの気象データは不足し ており,適用が困難である.ここでは,日毎の積雪水当 量をNOAA/AVHRRの衛星画像データで検証し,合理的 にdegree-day法の融雪係数を導いた.日降雪量の推定に は,AMeDASデータの日平均気温と降水量を利用した. 日平均気温は,国土数値情報KS-META-G05-56Mデータ に格納された標高データを利用し,気温減率0.6 /100m の補正と重み付距離平均法から数値地図データに補間さ れた.降水量は降雪判別気温を2 とし,気温2 以上を 降雨,2 以下を降雪として,重み付距離平均法と式(5) に示す近藤らの標高補正¹⁸⁾を用いて数値地図データに補 間された.積雪水量の算定式は式(6)に示す.

$$SM = Kd \times T$$
 (4)

$$SF = SF' \times \left\{ 1 + 0.001 \times \left(E_m - E_p \right) \right\}$$
⁽⁵⁾

$$d/dt(SWE) = SF - SM \tag{6}$$

ここで, Kd:融雪経数, T:日平均気温, SF:標高補正 の降雪量, SF':AMeDAS観測地点の降雪量, E_m :メッ シュ標高値, E_p :観測地点の標高全水当, SWE:積雪水 当量である.本論文ではNOAA/AVHRRの衛星画像を利用 し1990年から2005年の融雪データをもとめた. (2) 地質・地形データ

地質データに国土数値情報KS-META-G05-54Mデータ を利用する.土砂災害実績¹⁹から崩積土,第三系と新第 三系の堆積岩,花崗岩を評価対象の地質にする.

地形データに起伏量を用いる.起伏量データは国土数 値情報KS-META-G05-56Mデータに格納されたセル内の 最高標高と最低標高の差である,起伏量が大きい場合, 地形開析も著しくなり,活発に地形が発達する.このた め,起伏量は土砂崩壊の危険度評価のパラメータとして 利用されている²⁰⁾.

(3) 災害実績データ

災害実績データに国土交通省監修の水害統計を利用す る.資料には災害位置と日時が記載され,融雪に起因し た災害を把握できる.土砂災害の頻発した融雪イベント と地域を抽出する.イベントおよび地域を土砂災害発生 確率モデル式に利用するため,この地域をセル解像度 1km×1kmのデータに整理する.

(4) 道路データ

道路データに国土数値情報のKS-META-N05-15Mデー タを利用する.このデータはセル解像度1m×1km内の幅 員毎の道路延長を格納する.リスク算定には幅員よりも 道路種別の区別が望ましく,幅員W=13mを高速道路国 道相当,W=3.0m以上13m未満を一般道相当と仮定する.

3.融雪と土砂災害の関係

経年の融雪量と土砂災害の実績の関係から,土砂災害 の発生しやすい条件を年単位で評価する.この結果から, 発生確率モデルの構築に利用できる融雪イベントを抽出 する.対象地域全体を利用した場合,気候差異から融雪 現象の地域差が生じ,誤差の大きなモデルになる.そこ で,土砂災害の多発した地域の融雪現象からモデルを構

表-2 経年の最大週間融雪量と発生期間

在	最大融會	雪量期間 1問、	最大融雪期間 口亚均融雷号	
+	(1週间)		口平均融当里 (m)	
1990	2月9日	2月14日	0.34	
1991	3月28日	4月3日	0.61	
1992	3月9日	3月15日	0.66	
1993	3月31日	4月6日	0.65	
1994	4月8日	4月14日	0.68	
1995	3月25日	3月31日	0.47	
1996	4月18日	4月24日	0.76	
1997	3月7日	3月13日	0.66	
1998	2月27日	3月5日	0.56	
1999	4月12日	4月17日	0.53	
2000	3月23日	3月28日	0.99	
2001	3月21日	3月26日	0.84	
2002	2月15日	2月21日	0.63	
2003	2月15日	2月21日	0.67	
2004	3月18日	3月24日	0.84	
2005	3月27日	4月2日	0.90	

築し,そのモデルを東北全域に適用する.年単位の積雪 を把握するため,積雪水当量推定モデルを用い1990年か ら2005年の東北地方の積雪水当量を比較した.図-1に積 雪水当量の変動を示す.また,表-2に各年の1週間当た りの最大融雪量を示した期間,期間中の東北全域の融雪 量を示す.これらから,1996年,2000年,2005年が多雪 年であること,多雪年は融雪量が多いことを把握した. 多雪年は,1月に平年並だが,2月,3月に多大な積雪が 認められた.2月,3月の降雪に伴う積雪は,圧密付加さ れにくく,気温等の外的要因により融雪が促進されやす い.このため,急速な地下水供給が生じ,土砂災害の発 生しやすい状態になると推測される.図-2に1990年から 2005年に発生した融雪による土砂災害を市町村単位の数 量で示す.表より多雪年である1996年、2000年の災害発 生数の多さが示されている.2005年の水害統計は発刊さ れてないため災害数を把握できなかった.しかし,死傷 者を出した青森県黒石市の土砂災害等の甚大な被害が多 発している.これらの結果から,土砂災害を促しやすい 多雪年を融雪イベントとして利用すべきである.また, 積雪水当量変化から,2月,3月に最大積雪水当量を示す 年は,土砂災害の発生が懸念される.晩冬の多積雪は土 砂災害への警戒が必要である.多雪年の災害を検証する と,2000年の融雪期は,北陸地方,東北地方南部で土砂 災害が頻発し,内閣府より「平成12年における特定地域 に係る激甚災害の指定及びこれに対し適用すべき措置の 指定に関する政令」が発令された.福島県会津若松建設

図-4 2000年3月/21日から3月28日の融雪分布

事務所管内では2000年3月21日から28日に61箇所の土砂 災害が発生し,会津地方全域が激甚災害区域に指定され た.この会津地方は,地質分布に偏りが少なく,モデル 式の作成に適した地域である.そこで,2000年の会津地 方における土砂災害の有無を対象にモデル式を構築する. 図-3は2000年融雪期の会津地方の土砂災害分布図である.

4.土砂災害リスクモデルの構築

土砂災害リスクモデルは,土砂災害の発生確率と経済 損失のモデルから構成される.発生確率と土砂災害に伴 う被害額を示すことで,適切な調査,対策の優先度の意 思決定に利用できる.以下に各モデルを説明する. (1)土砂災害発生確率モデル

筆者は,再現期間における降雨極値データを利用し多 重ロジスティック回帰分析による土砂災害発生確率モデ ルを構築した⁷⁾.本研究の土砂災害発生確率モデルもア ルゴリズムは同様だが,動水勾配を求める条件の対象が 降雨と融雪で異なる.このモデルで示される発生確率は, ある融雪状況が与えられた場合の土砂災害発生に対する 確率を示す.図-3に示された会津地域の土砂災害実績を モデル式に利用する.図-4に2000年3月23日から28日の 融雪分布状況を示す.モデルは,災害発生を100%,非 発生を0%とした二項分布の関係をロジスティック曲線 で連結させることで線形推定を可能にさせる.ロジス ティック曲線を動水勾配と起伏量の説明変数による重回 帰曲線で示すことでモデルが構築される.モデル式は地 質毎に作成される.地質別のモデル作成から地質の危険 性を序列化できる.発生確率モデル式は式(7),地質別の モデル条件は表-3に示す.標準化回帰係数は発生確率へ の寄与の大きさを示し,動水勾配がいずれの地質で最も 大きい標準化回帰係数で示されている.動水勾配変化の 起因である融雪量は災害発生を促し,融雪量が災害の予 警報に有用であることを示している.また,動水勾配は 融雪量により変化する動的データであるため,積雪の多 雪年と少雪年で土砂災害の発生確率は異なることになる.

$$P = \frac{1}{1 + \exp\left[-\left(\beta_0 + \beta_h hydY_h + \beta_r rollY_r\right)\right]}$$
(7)

ここで,P:発生確率, β_0 :切片, β_h :動水勾配係数, β_r :起伏量係数, $hydY_h$:動水勾配, $rollY_r$:起伏量である 図-5に発生確率と起伏量,動水勾配の関係を示した地 質別のロジスティック曲線を示す.曲線の傾き,説明変 数に対するロジスティック曲線の上昇位置により相対的 な地質の危険性を評価できる.地質別の危険度は,崩積 土,第三系と新第三系の堆積岩,花崗岩の順になる.こ の結果は,地質の硬軟と一致し,降雨極値にて構築され たモデル⁷⁾の傾向と一致する.

(2) 経済損失モデル

土砂災害に対する道路リスクRは経済損失モデルか ら導かれる被害額である.発生確率を被害の生ずる可能 性,道路延長と経済価値を損害規模とし,土砂災害の発 生確率とセル解像度 $lkm \times lkm$ 内の道路の経済損失費を 乗じてリスクを算定する²²⁾.交通条件として詳細情報が 記載されている交通センサス等の路線別調査結果の利用 が望ましいが,広域を網羅していない.そこで,経済損 失費に国土交通省監修の費用便益分析マニュアルと東北 地方整備局の道路交通調査結果の代表値を用いる.道路 復旧費 M_R ,式(8)に示す時間損失費 T_R と式(9)に示す距 離損失費 L_R の和で示される被害額から,式(10)を用い てセル内の経済損失費を求める.

$$T_{R} = \sum_{Link} \sum_{Car} Ti_{m} \times \left(T_{m1} \times S - T_{m2} \times S\right)$$
(8)

$$L_{R} = \sum_{Link} \sum_{Car} Ti_{m} \times \left(V_{m1} \times L_{1} \times S - V_{m2} \times L_{2} \times S \right) \quad (9)$$

$$R = T_R + L_R + \sum_{LinK} L \times M_R \tag{10}$$

ここで T_R :時間損失費(円セル内), Ti_m :時間価値原単位乗 用72.45円/分・台貨物519.74円/分・台), T_{m1} :迂回所要時間 (平時所用時間の2倍に仮定),S:車両数(平成11年度平均;高 速自動車国道15,801台/24h 一般道路5,401台/24h,割合;乗用車 61%,貨物59%), T_{m2} :平時所要時間延長(40km/h), L_R :

表-3 発生確率モデルの地質別パラメータ

地質	項目	動水勾配	起伏量	切 片
崩積土	係数	41.27	0.01	-12.72
	有意確率P值	0.02	0.02	0.01
	標準化回帰係数	4.25	1.05	-
新第三系 堆積岩	係数	31.48	0.01	-13.18
	有意確率P値	0.02	0.04	0.02
	標準化回帰係数	1.24	1.12	-
第三系 堆積岩	係数	29.87	0.01	-12.59
	有意確率P值	0.04	0.04	0.01
	標準化回帰係数	1.03	0.56	-
花崗岩	係数	14.26	0.02	-12.37
	有意確率P值	0.05	0.03	0.03
	標準化回帰係数	0.62	0.58	-

距離損失費(円・セル内), V_{m1} : 迂回時走行経費原単位、平時走行の2倍に仮定), L_1 迂回時走行距離延長の2倍), V_{m2} : 平時 走行原単位(高速自動車国道; 乗用6.30円台・km 貨物7.91円/ 台, 一般道路; 乗用15.04円/台・km 貨物5.03円台・km), L_2 : 平時走行距離延長), M_R : 道路復日費(国道・主要地 方道103(千円/m), 市町村道77(千円/m)), R: セル内の被害額 (円)である.

5.解析結果

多雪年の土砂災害の発生確率,道路の経済損失の評価 結果を分布図に示す.また,調査と対策の必要な危険地 の抽出には時系列のリスク変動の把握も必要である.そ こで,多雪年のモデルを利用して,1)少雪年(1990年), 2)通常年(1999年)の土砂災害リスクも評価する.また, 地球温暖化に伴う気温上昇を考慮し,3)多雪年の積雪状 態で日平均気温が1 上昇した場合の融雪量のケースも 評価する.温暖化による降雪量減少も推測されるが,突 発的な積雪量増大の予測⁴⁰や近年の突発的降水現象の記 録から,このケースを検討した.1)から3)の検討から融 雪による土砂災害の時系列的な地域特性を示す. (1)多雪年の土砂災害発生確率

図-6に土砂災害発生確率分布を示す.秋田県,山形県, 福島県会津地域に80%以上の発生確率地域が分布し,特 に,会津,山形県肘折,秋田県の出羽山地東麓の由利本 荘から秋田市,出羽山地に属する森吉と阿仁合は高発生 確率が集中する.太平洋側の発生確率80%以上の地域は,

図-6 土砂災害発生確率分布(2000)

図-7 道路密度分布(幅員5.5.~13m)

北上山地東麓の部分的な地域,阿武隈山地である.また, 白神山地の北麓と南麓,奥羽山脈の西麓と東麓の発生確 率分布の差異が特徴的である.この原因として,融雪量 の差以外に,北南および西東で斜面起伏が異なることが 挙げられる.白神山地は北麓,奥羽山脈は岩手山南麓, 焼石岳,栗駒山,蔵王山を除いた東麓が低い発生確率を 示す.なお,2000年融雪期の災害実績と比較すると,災 害地域は平均83.5%(標準偏差8.6%),災害の非発生地域 は平均18.57%(標準偏差13.3%)である.災害地域は高い 発生確率で示されている.

(2) 多雪年の道路の経済損失

図-7に一般道相当の道路密度分布,図-8に多雪年の 2000年の道路経済損失分布を示す.秋田県は総じて道路 経済損失が高く,山岳地に接する道路で1千万以上の被 害額を示す.経済損失費の連続的分布から予測される危 険度の高い道路区間は,秋田県本荘由利地区周辺の国道 7,107号線,鳥海エコーライン,秋田県と山形県の県境 の国道13号線,山形県温海町の国道7号線,山形県朝日 村の国道112号線,山形県高畠町から福島県境までの国 道13号線,山形県と福島県の国道121号線,福島県西会 津町の国道49号線,磐梯吾妻スカイラインである.これ らはセル単位で5億円以上の経済損失を示す.位置的に 出羽山地内,もしくは,接する国道および地方主要道と いう共通点をもち.出羽山地内の道路における土砂災害 の脆弱性が示され、土砂災害対策と監視体制の重点的な 整備の必要性が示唆される.近年の対策状況を比較し, 更に,経済損失の高い地域の抽出が今後の課題である. (3) 土砂災害の時系列変化

図-9に少雪年,通常年の土砂災害発生確率分布,図-10に道路経済損失分布を示す. 少雪年の発生確率結果か ら,秋田,山形、福島県会津の出羽山地周辺が発生確率 を示す地域である.発生確率80%以上の地域は日本海側 地域に点在する程度である.通常年の結果では,多雪年 とほぼ同地域に発生確率が認められる.出羽山地に発生 確率80%程度の地域が集中する.なお,北上,阿武隈山 地の発生確率は0%である.少雪年の道路経済損失の結 果より,秋田県全域に道路区間で1千万円から5千万未満 の道路経済損失が点在する.山形県,会津,福島県いわ き市の阿武隈山地内で1千万円より大きい道路経済損失

図-9 土砂災害発生確率分布(少雪年,通常年)

が点在する.通常年の結果により,秋田県,山形県に5 億円以上の道路経済損失を示すセルが分布し,秋田県本 荘由利地区周辺の国道7,107号線および鳥海エコーライ ン,秋田と山形の県境の国道13号線,山形県朝日村の国 道112号線,山形県高畠町から福島県の県境付近の国道

13号線は連続で示されている.これらは,通年で土砂災 害の危険性が高い至急対策の必要な地域と評価できる.

図-11に日平均気温1度上昇時の融雪による土砂災害発 生確率,図-12に道路経済損失分布を示す,発生確率結 果より,秋田県,山形県,福島県会津地方の山岳地が発 生確率80%以上に変化する.福島県,宮城県の丘陵地域 の発生確率が上昇し,多雪年の北上山地東山麓の発生確 率80%以上の領域が拡大化する.気温上昇の影響から, 日本海側の山岳地全体,太平洋側の丘陵地における土砂 災害の増加が予測される.道路の経済損失の結果より, 経済損失は全域で概ね上昇し,秋田県内の道路は経済損 失1千万円以上になる.また,太平洋側の道路経済損失 の上昇が著しく, 牡鹿半島一体, 国道6号線に並行する 相馬,原町の県道が高い経済損失を示す.現在,太平洋 側地域の融雪による土砂災害は想定外だが,気温上昇に 伴う融雪加速が生じた場合,太平洋域の道路も監視が必 要である.なお,気温上昇に伴う融雪が発生した場合, 多雪年の約2.5倍の道路経済損失となる.

6.結論

土砂災害実績を利用して融雪に起因する土砂災害の発 生確率モデルと経済損失モデルを構築し,結果を分布図 に示した.以下に本研究の成果を列挙する.

- 土砂災害の発生確率は、出羽山地周辺、阿武隈山地 山裾、北上山地の東山麓が高い発生確率を示す.こ れらは多雪年で発生確率80%以上を示す.
- 2) 多雪年に出羽山地に接する国道7,13,49,108,121号で 概ね5億円以上の経済損失が連続に認められる.
- 少雪,通常年は,経済損失,発生確率の高い地域が 狭まるが,出羽山地で発生確率80%以上,経済損失
 5億円以上の地域が点在する.
- 1 の気温上昇により、日本海側のほとんどの山地 は発生確率80%以上を示す.太平洋側は、北上山地、 福島県と宮城県の丘陵で生確率の上昇域が存在し、 発生確率80%以上になる.温暖化に伴う太平洋側の 道路管理の重要性を示す結果が得られた.

今後の課題として,1997年5月に発生した八幡平の土 石流の事例に示される,豪雨が著しい融雪現象を発生さ せることにより発生した土砂災害も解析する意向である.

謝辞:災害関連データを国土交通省東北整備局,福島県 土木部より提供して頂いた.本研究は「環境省の地球環 境研究総合推進費(S-4):温暖化の危険な水準及び温室効 果ガス安定化レベル検討のための温暖化影響の総合的評 価に関する研究」の援助を受けた.謝意を表します.

参考文献

1) 佐藤篤司:平成18年豪雪, 自然災害科学, Vol.25, No.1, pp.71-

81, 2006.

- 2)伊藤驍:積雪寒冷地帯における気象変動と地盤災害の変動, 土と基礎, Vol.49, No.1, pp5-8, 2001.
- Groisman, P.Y., T.R.Karl and R. W. Knight : Changes of snow cover, temperature and radiative heat balance over the Northern Hemisphere, J.Climate, Vol.7, pp.1633-1656, 1994.
- 4) 井上聡,横山広太郎:地球環境変化時における降積雪の変動 予測,雪氷, Vol.60, pp.367-378, 1998.
- 5) 赤澤悠子,沼口敦,江守正多:地球温暖化に伴う積雪量変化の 地域特性,水文水資源学会誌, Vol.18, No.5, pp.510-520, 2005.
- 6)風間聡,沖大幹:温暖化による水資源への影響,地球環境, Vol.11, No.1, pp.59-65. 2006.
- 川越清樹,風間聡,沢本正樹:降雨極値の再現期間を用いた斜面災害の発生確率,水工学論文集,Vol.50, pp.619-624, 2006.
- 8) 水田敏彦・瀬尾一大:数値標高モデルに基づく豪雨による 斜面崩壊危険予測 長崎市を事例対象にして,自然災害科 学,Vol.19, No.4, pp.477-491, 2001.
- Jida,T.: A stochastic hydoro-geomorphological model for sallow landslideing due to rainstorm, CATENA, Vol.34, Issues 3-4, pp.293-313, 1999.
- 10) 丸山清輝,武士俊哉:積雪地域地すべり防止のための地表面 に達する日積雪内浸透量簡易推定式に関する検討,日本地す べり学会誌, Vol.41, No.4, pp.85-90, 2004.
- 11) 植村昌一,平松晋也,井良沢道也:融雪に起因した表層崩壊 発生予測モデル,日本地すべり学会誌,Vol.36,No.3, pp.76-84, 1999.
- 12) 浅野志穂,朴三奎,松浦純生,岡本隆:大規模地すべり地にお ける融雪期の地下水流動解析,日本地すべり学会誌, Vol.36, No.4, pp.70-76, 1999.
- 13) 泉宏和,風間聡,戸塚岳大,沢本正樹:全日本の積雪水量,積 雪深,全層積雪密度分布推定,水工学論文集,Vol.49, pp.301-306,2005.
- 14) 森脇寛,矢崎忍,黄文峰:降雨浸透に伴う地下水流の発達・ 減水過程と斜面崩壊に及ぼす影響に関する考察,日本地すべ リ学会誌, Vol.43, No.1, pp.9-19, 2006.
- 15) 谷誠: 一次元鉛直不飽和浸透によって生じる水面上昇の特性, 日本林学会誌, 64 (11), pp.409-418, 1982.
- 16) Brutsaert,W.F. : The permeability of a porous medium determined from certain probability laws for pore size distribution, Water Resources Research, Vol.4, No.2, pp.425-434, 1968.
- 17) 小池俊雄,高橋裕,吉野昭一:積雪面積情報による流域積雪水 量の推定,土木学会論文集,No.357, - 3, pp.159-165,1985.
- 近藤純正,本谷研,松島大:新バケツモデルを用いた流域の土 壌水分量,流出量、積雪水当量,及び河川水温の研究,天気, Vol.42, pp.821-831, 1995.
- 19) 地盤学会東北支部:東北の地盤工学,pp.366, 1997.
- 20) 吉松弘行:山腹崩壊の予測式について,新砂防,Vol.102, pp.1-9, 1977.
- 21) 水谷守,阿部清治:確率論的リスク評価における不確実性 分離に関する考察, JCOSSAR'95 論文集, pp.319-324, 1995.

(2006.9.30 受付)