
 
 

 FICTITIOUS-DOMAIN SIMULATION OF SOLID-LIQUID 
FLOW WITH “SUBGRID” LUBRICATION FORCE 

CORRECTION; A SPHERE FALLING ONTO A PLANE 
SURFACE 

 
 

Y  NGUYEN1, John  WELLS2* and Hung TRUONG1* 

 
Dept. of Civil & Environmental Engineering, Ritsumeikan University 

(Noji Higashi 1-1-1 Kusatsu, Shiga, 525-8577, Japan) 
1 Graduate student,  2 Associate Professor, *  Member of JSCE 

 
 

A simple correction model for “subgrid” lubrication force is proposed for fictitious-domain simulation 
of solid-liquid flow employing the Variable-density Implicit Volumetric forcing. The model is to 
compensate the unresolved lubrication force for gaps of few grid spacings between the solid surfaces, and 
is validated with the examination of velocity history and fluid force acting on spherical particles falling 
under gravity towards a plane wall. The peak particle Reynolds number is from 7 to 58, and relative 
density between the fluid and the solid is up to 2.9. Excellent agreements have been observed among the 
simulation results, the experimental ones, and predictions from an analytical model which consists of the 
lubrication force proposed by Cox & Brenner (1967), the added mass force proposed by Milne-Thomson 
(1968), and the history term proposed by Mei & Adrian (1992). 
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1. INTRODUCTION 
 

Bedload sediment transport in rivers and near-
coast is fundamental in hydraulics because of its 
influence on the flows, and because of the resulting 
erosion of river banks or the seabed. However, 
bedload transport is extremely complicated due to 
dense concentration of solid phase in the highly 
sheared turbulent liquid which yields, and 
influenced by, interaction between the flow 
turbulence and solid particles on the bed, and among 
the bed particles themselves. Therefore, 
understanding of these phenomena is crucial to 
describe the bedload motion. 

Aiming to numerically simulate bedload transport 
at feasible computational cost, our group is 
implementing the fictitious-domain method (Truong 
et al, 2005, 2006). In this method, the solid phase is 
treated as a fluid and governing equations are solved 
throughout the computational domain with fixed 
Cartesian grid, thus re-meshing is not required after 
each computation step to satisfy the non-slip 
condition on the surface of the particles. Rigid 
motions of the solid particles are constrained by 
adding an artificial force to the governing equations 
when they are solved through the solid phase, hence 
fluid forces acting on the solid particles are 
evaluated implicitly rather than integrated stress 
distribution over solid surfaces. This yields a fact 

that when gaps between the solid surfaces are less 
that one grid spacing, lubrication effects may not be 
fully solved, hence the fluid force acting on the 
particle is under-estimated. 

In this paper, we first examine the unresolved part 
of the fluid force due to the lubrication effects and 
then propose a simple model to compensate it in the 
fictitious-domain simulation method, called 
“subgrid” correction model for lubrication force. 
The model is applied in tests of spherical particles 
approaching to a plane wall at small gaps. The 
results, in terms of particle velocity and fluid forces, 
are compared with those of Harada et al (2001), and 
with experimental and analytical ones. 

 
2. REVIEW OF THEORY 

 
One of the most important factors of the 

mechanism of inter-particle interaction is the fluid 
force acting on the particles when the gap between 
the surfaces is small compare to the particle 
diameters. For a sphere moving perpendicular to a 
plane surface, due to the squeezing effects of the 
fluid in the gap which satisfies the quasi-static 
Stokes equation, the fluid force can be described by 
the well-known lubrication one:   

gappfl xuRF 26πµ=  



 

in which R and up is the radius and velocity of the 
sphere, µf is the dynamic viscosity of the fluid, xgap 
is the minimum distance between the surface of the 
sphere and the wall. Cox and Brenner (1967) 
included, to lowest order in Reynolds number, the 
effect of fluid inertia on fluid force and proposed the 
equation: 
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where ε=xgap/R and Rep=upR/νf 
Their derivation, which was based on singular 

perturbation techniques, requires ε<<1 and 
εRep<<1 . 

When the particle is accelerating perpendicular to 
the wall, Milne-Thomson (1968) showed that the 
resulting added mass force increases by a factor of 
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here, ρf is fluid density. 
The history force acting on a sphere is expressed 

as the integration of a product of the acceleration of 
the particle and a kernel K: 
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At zero Reynolds number, the kernel K is derived 
analytically and the force is known as the Basset 
one (Michaelides, 2003). At finite Reynolds number, 
the kernel K has been obtained mostly via numerical 
results (Michaelides, 2003). One such empirical 
expression is proposed by Mei and Adrian (1992): 
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for finite Reynolds number. 

Based on simulation with body-fitted coordinate 
system, Harada et al (2001) reported fluid force 
acting a sphere falling toward a wall at peak 
Reynolds number of around 1 and 7. However, their 
simulation stopped at around 5% of the particle 
diameter from the wall due to unstable calculations. 

Following Harada et al (2001, “model B”), we 
will use an analytical model for the fluid force on 
the sphere, simply summing Eq.(1),(2),and(3).  
Eq.(2) is a simpler alternative to the expression they 
used, though equally valid.  Eq.(3b) is valid for 
finite Reynolds number, unlike the Basset 
expression for K  employed by Harada et al(2001) .  
This model will be validated experimentally and 
numerically in section 5 for intermediate values of 
the gap xgap. On that basis, we use Cox and 
Brenner’s (1967), Eq.(1) as “ground truth” for the 
lubrication force. 
 
3. SIMULATION METHOD 
 

In fictitious-domain method, the same governing 
equations are applied over the entire flow domain 
using fixed Cartesian grid. The present of the body 
is accounted by artificial body force terms added to 
the momentum equations.  
 
(1) Numerical method 

The simulations were done with fictitious-domain 
method employing Variable-density Implicit 
Volumetric forcing scheme (VIV). This method has 
been tested extensively, as reported by Truong et al 
(2005, 2006). The method is summarized as follows. 

Let Ωf and Ωp be the region occupied by the rigid 
body and the fluid, respectively, and Ω=Ωf ∪Ωp be 
the entire computational domain containing both the 
solid and fluid phases.  The governing equations are 
the variable density Navier-Stokes equations: 
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where ρp is solid density, u=(1-α)uf+αup is the 
velocity and ])(µ[p Tuuδσ ∇+∇+=  is the stress 
tensor defined over the entire domain Ω  which 
satisfied  ff

| σσ =Ω . The volume fraction α is 
determined by a cosine distribution to smooth 
temporal and spatial changes in material properties: 
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where r  is the distance from a grid box center to the 
center of sphere, and ζ  is the half-width of the 
smoothing fringe. Truong et al (2005) reported that 
the results are insensitive to the choice of ζ  within 
1-2 grid spacings. For the simulation reported here, 
we chose ζ =1. 



 

The density ρ  and viscosity µ are determined by: 
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where pµ  is the viscosity employed for the solid 
phase, which is usually set proportional to density 

f

p
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µµ =  the virtual viscosity to avoid 

constraining the time step any more than necessary.  
f is the artificial body force to recover rigid 

motion. In the VIV method, the particle physical 
density is used in the momentum equation, and 
consequently f causes the immersed solid particle to 
move with a physically correct acceleration. The 
particle tentative velocity is treated as unknown and 
be solved together with the fluid motion. The 
rigidity constraint force density at each grid cell in 
the computational domain is then defined by:     
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or extend to the entire domain Ω  as  
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Dup/Dt is determined to satisfy rigid motion, and so 
that f yields zero net injection of momentum within 
each particle’s fictitious domain, and the net 
momentum added to the fluid is zero. Thus the rigid 
motion of any immersed particles at any instant 
could be recovered from the corresponded velocity 
field. 
 
(2) Correction model for “subgrid” 
lubrication force 

Davis et al (1986) assumed that the lubrication 
force dominates from a gap of 0.5% of the sphere 
diameter in their simulation of elastohydrodynamic 
collision of two spheres. Adopting such assumption, 

in our simulation, it requires the number of grid 
points per diameter, Dp/h, to be 200 or more. This is 
prohibitively dense, especially for simulation of 
hundreds or thousands of particles. Consequently, a 
model to recover the un-resolved lubrication effects 
for coarser grid resolution is required. 

Cox and Brenner’s (1967) lubrication force 
(Eq.(1)) is used as a benchmark to evaluate the un-
resolved lubrication force in our simulation. 
Hydrodynamics acting on a sphere with neutral 
density approaching to a rigid wall from a gap of 
10% to 20% of the diameter with a constant velocity 
Uo corresponding to Reynolds 
number, fpoD DURe ν= , from 10 to 120 were 
evaluated. The ‘resolved lubrication force’ is 
compared to Cox and Brenner’s (1967) equation and 
shown in Fig.1 as a function of number of grid 
spacing from the wall. Note initial position of the 
particle does not change the result. 

For each Reynolds number, the simulation was 
run with many grid resolutions, i.e. many numbers 
of Dp/h, and it is found that at a certain Reynolds 
number, there was a number of Dp/h above which 

the ratio of 
forcen lubricatio sBrenner'&Cox

force'n lubricatio resolved'
 of 

all Reynolds number in the tested range fell into a 
single curve, as presented in Table 1. Note that at 
these values of the ‘threshold Dp/h’, all the Reynolds 
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Fig.1 Ratio of “resolved lubrication force” and Cox & Brenner’s (1967) lubrication force, Eq.(1), vs. distance from wall in 
grid spacing, xgap/h. Reynolds number: 10-120, number of grids per diameter: 24-70. 
 

Table 1 Tested particle Reynolds numbers. h is “threshold” grid 
spacing below which curve of Fig.1 does not change. 

 

Re 
h

Dp
 

υ
hU o=h1Re  

10 24 0.42 
20 30 0.66 
30 36 0.83 
60 40 1.5 
80 60 1.33 

100 66 1.52 
120 70 1.71 

 



 

numbers based on gap h1Re are less than 2, where 
Cox and Brenner’s (1967) expression for lubrication 
force should be applicable.  

This curve is fitted by an exponential function: 
 

hxgape /34.11
forcen lubricatio sBrenner'&Cox

force'n lubricatio resolved' −−=

 
in which xgap/h is the distance from the wall, in grid 
spacing. Therefore the added force required to 
compensate the lubrication effects is: 

hxgapexf /34.1)( −=                           (11) 
with the condition that h1Re is less than 2. This 
extra force is accounted to the constraint of the rigid 
motion of the particle after each computational time 
step. 
 
4. EXPERIMENT 
 

The experimental conditions are presented in 
Table 2. Nylon and glass spheres were positioned at 
specific distances above a bottom wall of a glass 
tank which is filled with mixtures of machine oils. A 
nylon fishing string with a diameter of less than 
0.2mm is glued on the top of the sphere and 

attached to a tweezers which could be moved in the 
vertical direction by a stage to a resolution of 5µm. 
The light source was a strobe or a light bulb 
opposite to a mirror so that the particle was 
illuminated from both directions. To prevent the 
fluid from warming up, the light source was turn off 
right after each run. A camera running at 240Hz 
with a 105mm micro-lens was connected to a 
computer to provide magnified view for adjusting 
the position of the particle and to record images of 
the particle’s motion. To drop the sphere, the 
tweezers were released when the fluid inside the 
tank was observed to be at rest. The velocity of the 
particle at a vertical position (xi+xi+1)/2 above the 

wall was determined by 
∆t

xx
u 1ii

p
+−

= , where 

∆t=(1/240) second, xi and xi+1 are the particle’s 
positions in two successive images. 

Viscosities of the machine oils were determined 
by dropping sphere method. Terminal velocities of 
small plastic spheres in the fluids were measured 
and then the drag coefficients were obtained. 
Terminal Reynolds numbers, and hence 
corresponding viscosities, were calculated from the 
standard drag curves (Clift et al, 1978). These 
standard curves, via iteration process, also help to 
determine the terminal velocities of the test spheres 
in corresponding experimental conditions as shown 
in Table 2. 
 
5. RESULTS 
 
(1) Comparison with Harada et al’s (2001) result 

In Fig. 3, our simulation results are plotted 
together with Harada et al’s (2001) experimental 
and simulation data for their test Case B of which 
the peak Reynolds number is about 7, relative 
density is 1.144, and a domain of (3Dp)3. Excellent 
agreement can be seen. With our fictitious-domain 
simulation method, the simulation stops only when 
proceeding to the next time step, the physical 
particle surface is out of the computational domain. 
The convergence of the simulation results with 
increasing grid resolution is confirmed to have been 
achieved for 24 and 32 grid points per diameter, 
though not 12. The significance of the lubrication 
force correction (Eq.(11)) at a few grid points from 
the wall is clear with the test of 24grid/Dp.  Harada 
et al’s simulation results lie closer to the trajectory 
calculated with the correction included, but their 
two experimental points nearest the wall lie closer to 
the uncorrected trajectory.  We return to this issue in 
the next subsection.  

Also shown in this figure is our analytical model 
for the fluid force acting on the particle near wall,  
 

 
Table 2 Experiment and simulation conditions.  
 

 Nylon sphere Glass sphere 
 Test P1 Test P2 Test G1 Test G2 
ρp (g/cm3) 1.129 1.356 2.525 
Dp (cm) 2.27 1.71 2.45 
ρf (g/cm3) 0.869 0.873 0.877 0.869 
µf (g/cm.s) 0.839 0.219 2.17 0.839 
xgap-initial/Dp 0.1 0.152 0.164 
Ut (cm/s) 24.7 39.2 66.7 91.8 
ρp/ρf 1.3 1.55 2.88 2.91 
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Fig.2 Experiment apparatus: 1) camera, 2) glass tank 
(10x10x10cm3) filled with machine oil, 3) sphere, 4) stage, 
5) light source, 6) tweezers, 7) mirror. 



 

Fig.3 Comparison to Harada et al (2001), test Case B; Our 
simulation:   32grid/Dp,  24grid/Dp,  

24grid/Dp: no lubrication force correction, 
12grid/Dp; Harada et al’s (2001) experiment; 

Harada et al’s (2001) simulation; our model 
 

F=FlC+FAD+FH. From the initial conditions, velocity 
of the particle is integrated from the fluid force 
model, and again the fluid force at each position is 
evaluated simultaneously from the velocity history 
and the instantaneous one. This model is in good 
agreement with both our simulation and Harada et 
al’s (2001) results. 
 
 (2) Comparison to Experiments 

In Fig. 4 and Fig. 5, results from the simulation 
and from the fluid force model are presented 
together with the experimental data from tests with 
the plastic and glass spheres, respectively.  

Consider first the values of gap for which 
experimental data are available. The simulation 
results, which in all cases have been checked to 
converge with increasing resolution, agree 
extremely well with the force model, and 
consistently pass through the center of the 
experimental scatter.  Over the tested range of 
relative density and Reynolds number, this provides 
strong evidence that both the simulation method and 
the force model are accurate to within a few percent 
for these “intermediate” values of gap.    

Next, we consider the validity of the lubrication 
force correction used in our simulations, which 
becomes significant when the gap is less than about 
one grid point (Fig. 1), over the range of parameters 

tested.  Experimental data for such small gaps is 
only available in the test of Harada et al (Fig. 3), 
and our test P1 (Fig 4), for which the peak Reynolds 
number of 10, and relative density of 1.3 are very 
similar to Harada et al. As already remarked, the 
former data do not provide support for the 
lubrication correction.  By contrast, our test P1, with 
substantially more data points, does indeed agree 
well with the simulation results that include the 
lubrication correction.   

Though the direct experimental support for our 
lubrication correction is thus only partial, we argue 
that the analytical model can serve as a credible 
benchmark at the small values of xgap now under 
consideration.  First, consider the validity of the 
added mass contribution (Eq.(2)) during the final 
approach.  Physically, its value does not change 
more than a few percent.  Numerically, we expect 
the velocity profile in the gap is “smeared” out 
somewhat, but we confidently expect that smearing 
of the flow in the gap should not pollute this 
component of  wall-normal momentum in the 
resolved flow, and conclude that the added-mass 
effect does not induce errors in the fluid force on the 
simulated particle. 

We have no argument for the continued 
theoretical validity of the history term (3) at small 
gaps, nor for the correct treatment of this effect in 
the simulations when the gap becomes small.  
However, the relevant curves in Figs 4 and 5 show 
that the relative importance of this term decreases as 
particle Reynolds number increases.  

Finally, there seems little doubt that the 
lubrication contribution, Eq.(1), becomes 
increasingly accurate as the gap decreases.  Thus, 
together with the preceding arguments about the 
contributions (2) and (3), we believe that the 
analytical model, validated by nearly all of the 
available experimental data, should be at least 
equally valid for the small gaps not covered by the 
measurements, and thus can serve as a benchmark 
for the numerical simulations.   

Now it is possible that the non-neutral densities in 
the simulation runs corresponding to our 
experimental cases could induce an error in the 
lubrication flow.  But with the preceding 
justification, we now invoke our analytical model as 
a benchmark.  The good agreement between this 
model and the simulations then suggests that the 
latter, including the lubrication correction, are 
indeed accurate. 

 Deceleration of the particles due to the presence 
of the wall can be seen in all tests. The particles 
moving with smaller Reynolds numbers are, as 
expected, affected by the wall at larger gaps. 
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Fig.4 Tests with plastic sphere in machine oils (symbols as in 
Fig. 5) 

 
At the beginning of motion, the two unsteady 

forces, the added mass force FAD and the history 
force FH, are dominant over the lubrication one, FlC. 
Near to the wall, the deceleration of the particle 
causes FAD and FH to change their sign, FlC increases 
and becomes dominant. It is noticed that at very 
small gap, FH is negligible compared to FlC while the 
FAD is not. Therefore, a distance from wall where the 
other forces can be completely neglected compared 
to the lubrication force is hard to specify here. 
 
6. SUMMARY 
 

Overall agreements in velocity history and fluid 
force of the spheres falling onto a plane surface have 
been observed among the simulation results, the 
analytical, and the experimental ones. The model of 
“subgrid” lubrication force added to the fictitious-
domain VIV method to compensate the unresolved 
lubrication force is proved to work very well in the 
tested range of peak Reynolds number from 7 to 58, 
and relative density up to 2.9. This result makes us 
optimistic for applying this model to the fictitious 
domain simulation of dense-phase granular flow in 
liquid. In the near future, tests with higher Reynolds 
numbers, and accelerometers to monitor particle 
trajectories, are planned. 
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Fig. 5 Tests with glass sphere in machine oils 
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