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    Four dimensional data assimilation (4DDA) system of three-dimensional distributions of radar 
reflective factor and Doppler velocity by a hydrostatic atmospheric model with a conceptual 
precipitation model will be proposed. The 4DDA is realized by the variational method for Doppler 
velocity and the extended Kalman filter for radar reflective factor. The method was applied to a 
rainfall event observed by two neighboring operational volume-scanning radars one of which is the 
Doppler radar. As a result, it was found that introducing such the assimilation method improves the 
prediction accuracy of three hours lead time. However, a limitation of used hydrostatic mesoscale 
model was also found. In the initial condition after assimilation, there is a little heavy rainfall area at 
the position different from radar observation. This shows that there is a discrepancy between the time 
evolution of observations and the time evolution that governing equations of the used model requires. 
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1. INTRODUCTION 
 

Nakakita et al.1) classified operational short-term 
rainfall prediction into three categories: (1) those 
that extrapolate movement pattern of a horizontal 
rainfall distribution; (2) those that use the principles 
of water balance and thermodynamics with a 
conceptual precipitation method; and (3) those that 
use the full set of conservation equations at the 
mesoscale. Full list of related research paper is 
shown in Sugimoto et al.2). Most of the short-term 
rainfall prediction methods that use radar 
information have been belonged to the first category. 
It is apparent, however, that the temporal variation 
of the rainfall distribution is excessively 
complicated to be expressed by such simple 
extrapolation methods, especially over mountainous 
regions.  

The method belonging to the first category can 
practically be used until only one-hour prediction 
lead-time. On the other hand, a method belonging to 
the second category was developed by Nakakita et 
al.1) and this is operationally used by the Kinki 
Branch of the Ministry of Land, Infrastructure and 
Transportation (MLIT), Japan. On the other hand, in 
the last decade, as a method belonging to the third 

category, Japan Meteorological Agency started 
forecasting service based on a non-hydrostatic 
mesoscale numerical model. Also, mesoscale 
numerical prediction system with non-hydrostatic 
assumption, such as RAMS, ARPS, MM5, CReSS 
and WRF, has been developed. Recent concern in 
the community of meteorology is the assimilation of 
information from weather radar and other remote 
sensing, with these mesoscale numerical models for 
providing more accurate initial condition in a 
smaller spatial scale. The ultimate methodology of 
the data assimilation would be the four dimensional 
data assimilation (4DDA). 

Under these circumstances, the main concern of 
this paper is to develop a basic method of 4DDA of 
radar reflective factor and Doppler velocity. 
Therefore, used mesoscale atmospheric model in 
this paper is a hydrostatic model developed by 
authors who know all the details in this model and 
computer codes. 

 
2. USED MESOSCALE MODEL 
 

As mentioned above, the atmospheric model used 
is a hydrostatic mesoscale model. The model is 
developed by adding momentum conservation 



 

 

equations to a model that is used in the prediction 
method by Nakakita et al.1). Hereafter, the 
prediction method without momentum equation is 
referred as the original prediction method. 
. 
(1) Outline of the original prediction method 

This rainfall prediction method is a physically 
based, short-term rainfall prediction model. The 
basic equations used in the physically based model 
are sets of partial differential equations for 
conservation of liquid water, heat and water vapor at 
the mesoscale, and an equation for estimating the 
rainfall intensity. These equations are written as  
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where, x, y, and z define Cartesian coordinates in 
two horizontal direction and the vertical, 
respectively; u, v, and w are velocities of the air in 
the x-, y-, and z- directions in m/s; ml is the mixing 
ratio of precipitation particles in kg/kg; mv is the 
mixing ratio of water vapor in kg/kg; θ is the 
potential temperature in K; Q is the conversion rate 
of water vapor (CRWV) in kg/m3/s; r is the rainfall 
intensity in m/s; L is the latent heat of vaporization 
in J/kg; Cp is the specific heat at constant pressure in 
J/K/kg; p is the air pressure in hectopascals; Wt is 
the relative fall velocity of water particles in m/s; ρ 
and ρw are the density of air and liquid water in 
kg/m3, respectively. The CRWV is defined as the 
amount of water vapor converted to precipitation 
particles in per unit time and unit volume. There is 
no provision for cloud particles because they cannot 
be detected by weather radar. The terminal velocity 
Wt is from Ogura and Takahashi3); it relates the 
water content of the air to the mean 
volume-weighted terminal velocity. These basic 
equations are transformed from Cartesian 
coordinates (x, y, z) into a terrain-following 
coordinate system (x, y, s). The transformation can 
be written as s = (z - h(x, y))/(H - h(x, y)), where, H 
is the elevation of the top grid point in the model 
and h(x, y) is the terrain elevation. 

This prediction method involves several steps that 
are presented in more detail in Nakakita et al.1). 
Here, only important parts that relate to the data 
assimilation are described as followed.  
 
 

a) Estimation of initial conditions 
GPV and AMeDAS data with meso-α scale 

resolution are used to estimate three-dimensional 
wind vector (u, v, w), the air temperature, air 
pressure, and water vapor field under the constraint 
of hydrostatic. The estimated wind and pressure 
fields are assumed to be constant during the 
prediction procedure and are used as initial values. 
When introducing momentum conservation 
equations, this assumption will be renounced and all 
the fields will be time updated. 

An important part of this method is estimating the 
three-dimensional distribution of CRWV Q on the 
meso-β scale using Eq. (1) based on the retrieval 
method proposed by Nakakita et al.4). Here, using 
Marshal and Palmer’s drop size distribution5) for 
rain and Gunn and Marshall’s6) for snow, the past 
and current three-dimensional distribution of rainfall 
intensity r and the mixing ratio of precipitation 
particles ml are estimated from three-dimensional 
distribution of radar reflective factor Z. Then the 
CRWV can be estimated using Eq. (1) because (u, v, 
w), ml and r have been already estimated. In other 
words, the past and current CRWV distributions can 
be estimated using the past and current 
radar-reflectivity distributions. Additionally, the 
three-dimensional distributions of θ and mv at the 
scale of Q are retrieved with identifying the model 
parameter described in b), using the conservation 
equations.(1)–(3) and both CRWV and (u, v, w). 

 
b) Conceptual precipitation model and  

prediction procedure 
The conceptual precipitation model can be 

described by  
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and α(x, y, z) is the model parameter to be identified 
and predicted. Additionally, ms is the saturation 
mixing ratio, which can be identically calculated 
from the potential temperature θ and the air pressure 
p using any formula. 

Eq. (5) implies the assumption that water vapor 
beyond a newly defined saturation mixing ratio, 
(1-α)ms condenses to precipitation particles (or 
precipitation particles evaporate when water vapor 
mixing ratio is less than (1-α)ms). In other words, 
domains with large values of the parameter α are 
prone to relatively heavy rainfall. Therefore, the 
parameter can be taken as a kind of index which 
shows the degree of shortage of vertical water vapor 
flux brought on by the used meso-α wind field (u, v, 
w). In this sense, the conceptual precipitation model 
plays the role of bridging the gap between radar 
information and GPV scales. 



 

 

The past and current three-dimensional 
distributions of the parameter α are identified using 
Eq.(5) with estimated three-dimensional distribution 
of CRWV Q. On the other hand, in the prediction 
procedure, the three-dimensional distribution of the 
parameter α is calculated by simple horizontal 
advection of the identified distribution of α. That is  
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An advection vector (U, V) of the parameter is 
determined using an advection model proposed by 
Shiiba et al.7). The use of (U, V) instead of (u, v) is 
intended for expressing propagation of meso-β scale 
perturbation that drives the heavier rainfall field. 

Then, after basic equations (1)-(4) are 
simultaneously integrated, the three-dimensional 
distribution of rainfall intensity r can be predicted. 
 
(2) Introducing momentum conservation  

equations 
In the original prediction method described above, 

the estimated wind and pressure fields are assumed 
to be constant during the prediction procedure. 
However, those fields should be updated so that 
4DDA of Doppler velocity could be introduced into 
the original prediction method. Therefore, a 
hydrostatic atmospheric numerical model developed 
by Nakakita et al.8) is combined with the original 
prediction model. The momentum conservation 
equations used in the numerical model are 
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with the hydrostatic assumption 
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where, g is the global average of gravity 
acceleration in m/s2; π is a normalized air pressure 
defined by CpT/θ in J/K/kg; T is the air temperature 
in K; f is the Coriolis parameter in 1/s; (ug, vg) is the 
geostrophic wind vector in m/s; K is the eddy 
diffusion coefficient in ms. Details on definition of 
K can be seen in Nakakita et al.8). Subscript 0 
denotes the layer averaged value and dash denotes 
the deviation from the layer averaged value. 

Moreover, the elevation of the top grid point H 
is assumed to correspond to a constant-pressure 
level and to depend on position and time. Under 
these assumptions, the equation of continuity in the 

anelastic type can be written as  
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Final, by vertically integrating the continuity 
equation (10), we can get 
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as the equation of the time change of the top 
elevation H. 

In the prediction procedure, Eqs.(1)-(12) are 
simultaneously integrated using the Matsuno 
scheme9) and the upstream scheme. Details on 
boundary conditions can be seen in Nakakita et al 8). 
 
3. 4DDA OF DOPPLER VELOCITY AND  

RADAR REFLECTIVE FACTOR  
 
(1) Strategy of four dimensional data assimilation  

Roughly speaking, the data assimilation is the 
procedure of finding out an optimal initial condition 
by minimizing a weighted sum of residuals between 
the model outputs and their observations of the 
outputs, and residuals between the model out puts 
and its background estimates by, say, a priori 
forecast. In general, an initial condition is 
determined so that a cost function defined as 
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should be minimized. Here, x is a vector of 
predictive variables of all the model grid points; xb 
is the back ground estimate of x; B is the covariance 
matrix of expected error of xb; y is the vector of 
observations (e.g. radar observation); H(x) is the 
observation operator; R is the covariance matrix of 
expected error of observations; Jc(x) is an additional 
penalty function through which other dynamical or 
physical constraints can be imposed. 

The four dimensional data assimilation (4DDA) is 
the procedure of globally minimizing J(x) through 
all the predictive variables during whole the 
assimilation time period, under the constraint of 
prognostic and diagnostic governing equations  
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Fig. 1 schematically shows the strategy of 4DDA 

procedure proposed in this paper. The variational 
method is used for the assimilation of the Doppler 
velocity and the extended Kalman filter is used for 
the assimilation of the radar reflectivity.  
 
(2) Assimilation of radar reflectivity with the  

extended Kalman filter 
Eqs. (1), (5), and (6) with random error νm, νQ, 

and να, are chosen as the “system equations” as well 
as Ogura and Takahashi‘s relation2) with random 
error vw; .W

t w l WW K mβ ν= + Therefore, ml and α are 
taken as the state variables. On the other hand,  

b
l ZZ am w= +     (15) 

is chosen as an “observation equation”. Here, Z is 
the observation variable as the radar reflective factor 
and wz is a random error. In order to get Eq. (15), 
ether the radar equation, or Marshal and Palmer’s 
drop size distribution for rain and Gunn and 
Marshall’s can be used, with Eq. (4). Moreover, 

obs wαα α= + is chosen as another “observation 
equation”. Here, αobs is also taken as an observation 
variable which can be directly estimated through Eq. 
(5) with CRWV Q directly estimated through Eq. 
(1) from radar observations. wα is a random error. 

An important thing is that the Kalman filtering 
theory can be derived under the condition that M(x) 
and H(x) are linear in terms of x and y. Therefore, 
M(x) and H(x) have to be linearized, and the 
Kalman filter with these linearizations is called the 
extended Kalman filter. In this paper, M(x) and H(x) 
are linearized by Taylor’s expansion. On the other 
hand, if we assume that Z’ defined by Z1/b is a direct 
observation from radar, Eq. (15) is reduced to 

' ' .lZ a m= without using the Taylor’s expansion. 
 
(3) Assimilation of Doppler velocity with the  

variational method 
In the assimilation of Doppler velocity, the cost 

function is formulated as  
1

,obs ,obs
0

1
0 ,b 0 0,b

( ) ( ( )) ( ( ))
2

1           ( ) ( ),
2

N
Tw

k k k k k k k
k

T
o

a
J H R H

B

−

=

−

= − −

+ − −

∑x y x y x

x x x x
(16) 

under the constraint of discretized governing 
equation 

1 ( ) .k k k t+ = + Δx x M x    (17) 
Here, the second term of Eq. (16) is evaluated by the 
second term of Eq. (13) because all xk and xk,b are 
determined by x0 through the equation (14).  

On the other hand, the relative weight αw between 
first and second terms in the Eq. (16) can be 
determined so that the Akaike’s Bayesian 
Information Criteria (ABIC) should be minimized 
under the given derivative of operator ∂ Hk(x)/ ∂ x 
and the covariance matrixes Rk and B. 

The purpose of the variational method is to find 
out x0 that minimizes the cost function J(x0) defined 
by Eq.(16) under the constraint of Eq.(17) and 
observations yk,obs. This is identical to minimizing  
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by the method of Lagrangean undetermined 
coefficients. Here, T denotes the operation of 
transposition, and λ = (λ1, λ2, .., λN) is called the 
Lagrangean undetermined coefficients to be 
determined as well as optimal estimates of x1, x2, …, 
x N. This can be realized by / 0,  / 0.k kL L∂ ∂ = ∂ ∂ =x λ  

These equations determine λ  by the time-step 
procedures 
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This equation is called as the “adjoint equation”, 
and λ is called as the “adjoint variable”. You can see 
that the adjoint equation should be solved backward, 
because the subscript of λ is k in the left hand side 
while it is k+1 in the right hand side. This is the 
reason why the adjoint model is called the backward 
model as shown in Fig. 1. Assuming that xo and λo 
are obtained by (18) and (19), we can get gradient of 
the cost function J(x) as 

1
0 0 0( ) ( ) .b

wJ Bα −∇ = − −x x x λ   (20) 
Once we get this estimation of the gradient of J(x), 
we can get the optimal x using any methods of 
optimization. In this paper, the conjunct gradient 
method is used. 
 As the governing equations that become the 
constraint as Eq. (17), momentum conservation 
equations (7) and (8) are selected as the most basic 
equations. Also, Eq. (2) under the constraint of Eq. 

Prognostic Model（Forward Model） 
Kalman Filtering 

（3D Radar Reflectivity） 

Adjoint Model (Backward Model) 

Variational Method 

（3D Doppler Velocity ） 

Prediction

4DD Assimilation

Time 

Initial time 

Fig. 1  Strategy of 4DDA 



 

 

(9) is also selected, because θ’ directly affects the 
momentum conservation equations (7) and (8). 

Note that the backward Eq. (19) should be 
discretized as completely as possible following to 
the forward Eq.(17) which is also discretized by 
finite discrete approximation. In this paper, the 
Matsuno scheme is used for time integration and the 
typical upstream scheme is used for advection term 
in the forward model. Another important thing is 
how to define y and H(x). Here, we defined H(x) as 
the Doppler velocity at grid point (x, y, z). That is, 
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here, φ is the elevation angle and ϕ is the azimuth of 
the radar beam. On the other hand y is obtained 
after vertically interpolating the Doppler velocities 
observed at just above and below the simulation 
grid points. The interpolation is done as a vector 
that has the beam direction. 
 
4. CASE STUDY AND DISCUSSIONS 

 
Fig. 2 shows the target area with the size of 234 

km times 351 km. The circles with the radius of 120 
km show the observation areas of two operational 
volume-scanning radars 
managed by the MLIT. 
The radar located at 
northern part is a 
Doppler radar and the 
other is a conventional 
radar. The upper limit 
of the observation 
domains is 15 km from 
sea level and volume 
scan is carried out with 
every 7 minutes. In the 
data assimilation and prediction procedures, the 
coordinate system is a terrain-following in a 
three-dimensional geometry with 20 layers and with 
horizontal grid spacing of Δx, Δy = 9 km. Also, the 
200 hPa level is used as the constant-pressure top 
boundary. 

After applications with Eq. (5), the conceptual 
precipitation model has been replaced by 
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so that heavy rainfall prone effect by this model 
should be suppressed than original prediction 
method. The reasons of this are: i) there is no strong 
horizontal convergence in the original prediction 

method because the used wind field is in meso-α 
scale and is assumed to be constant, ii) However, in 
this paper, the field is not assumed to be constant 
and some strong convergences would be generated 
through both assimilation and prediction 
procedures. 
 

Table 1 Observed, assimilated, and predicted  
rainfall intensity 

 Initiatl Time 
(Assimilated) 

3-hours ahead 
(Prediction) 

(A)  
Observed Rainfall 

  

(B)  
Without Data  
Assimilation 

  
(C)  
Only Variational  
Method (Doppler 
Velocity) 

 
(D) 
Only Kalman Filter 
(Radar Reflective 
Factor) 

 
(E)  
Both Variational  
Method and 
Kalman Filter 

 
 

Table 1, (B) shows rainfall intensity predicted 
by original prediction method with the modified 
conceptual precipitation model. Therefore, the data 
assimilation is not used. On the other hand, (C) and 
(E) show assimilated and predicted distributions at 
3.5 km height. As the time period of assimilation 
procedure, 30 minutes is used as an arbitrary 
selection. 

In the case without data assimilation, Table 1,(B) 
shows the heavy rainfall area moved far northeast 
compared to observations in (A), and is subdivided 
into two parcels. Also, the rainfall in the initial time 
is not so widely distributed compared to (A). 

On the other hand, Table 1, (C) shows that, in 
the case of only the variational method, the 
northeastward movement of the rainfall area is 
suppressed compared to Table 1, (B). Also, the 
assimilated initial rainfall is distributed a little wider 

Fig. 2 Target area.



 

 

than that in (B). Fig. 3 shows predicted horizontal 
wind field at 3.5 km height. We can see that 
gradually increasing northern wind is predicted in 
the northwest part of the target region, which may 
decrease the northeastward propagation of rainfall 
area. However, the rainfall area is still subdivided. 

Table 1, (D) shows that, in the case only the 
Kalman filter is used, the northeastward movement 
of the rainfall area is suppressed compared to (B), 
and it is no more subdivided. Fig. 3 shows that 
gradually increasing horizontal convergence is 
predicted. Moreover, we can guess predicted 
northern wind in the case of only the variational 
method is directly induced by the assimilated 
Doppler velocity, while the convergence in the 
horizontal wind field in the case of only the Kalman 
filter is indirectly induced by upper wind 
additionally generated heat release by modified 
estimates of CRWV Q under assimilated radar 
reflective factor. We can see that widely spread 
light rain field is reproduced in the assimilated 
initial rainfall distribution compared to (B) and (C). 

Final, Table 1, (E) shows results through data 
assimilation both by the variational method and the 
Kalman filter. The northeastward movement is 
suppressed and the shape is kept better than 
previous three cases. Also, widely spread light rain 
field is reproduced in the assimilated initial rainfall 
distribution compared to (B) and (C). 

However, there exists a relative heavy 
assimilated rainfall area in the southwest part of the 
target area in (E), while not so strong rainfall area 
can be seen in the observed distribution in (A). 
Namely assimilated rainfall intensity in (E) is 
relatively heavier than that of other cases including 
the observations shown in (A). Note that this is a 
result from that here is a discrepancy between the 
time evolution of observations and the time 
evolution that governing equations of the used 
model requires. In other words, the existence of the 
assimilated rainfall area shows us a kind of 
limitation of the used hydrostatic mesoscale model. 
 
5. CONCLUSIONS 
 

Four dimensional data assimilation (4DDA) 
system of three-dimensional distributions of radar 
reflective factor and Doppler velocity by a 
hydrostatic atmospheric model with a conceptual 
precipitation model was proposed. The 4DD 
assimilation was realized by the variational method 
for Doppler velocity and the extended Kalman filter 
for radar reflective factor. The assimilation of the 
Doppler velocity improved three hours ahead 
prediction of location of heavy rainfall while the 

assimilation of radar reflective factor reproduced 
widely spread light rain field. However, a limitation 
of used hydrostatic mesoscale model was found. In 
the initial condition after assimilation, there is a 
little heavy rainfall area at the position different 
from radar observation. This shows that there is a 
discrepancy between the time evolution of 
observations and the time evolution that governing 
equations of the used model requires. In this sense, 
it should be a next step that this atmospheric model 
would be replaced by the CReSS or some other 
non-hydrostatic mesoscale atmospheric models. 
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