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   An input delayed neural network (IDNN) for synthetic inflow generation is presented to establish 
monthly inflow scenarios for the reservoir that supplies water to the city of Matsuyama, Japan. IDNNs are 
dynamic networks capable of accounting for nonlinearities and representing temporal information of input 
sequences. In this study, the IDNN model relates the two previous reservoir inflows in order to estimate the 
current inflow. The inflow scenarios will be used as input to optimization models in order to construct 
reservoir operation policies. Twenty years of historical inflows were used for calibrating the IDNN and a 
new 20-year synthetic series was generated. Besides the comparison with the IDNN-generated inflows, the 
statistics of historical series were also compared with those of synthetic series generated by a second-order 
autoregressive (AR-2) model. The IDNN model proved to be capable of preserving the main statistical 
characteristics of the historical series. 
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1. INTRODUCTION 
 
   The scarcity of water is a world-wide problem and 
it has been aggravated mainly in regions with 
increasing population. Such areas have limited 
economic development and a great need for 
immediate solutions. As a consequence, many 
researches have been carried out seeking for more 
efficient management of the water resources. One 
such research has been conducted in the city of 
Matsuyama, Japan. This city has periodical problems 
with the lack of water, an issue that can be tackled by 
reservoir operation optimization models. For the 
implementation of these models, it is frequently 
necessary to use future reservoir inflow scenarios1). 
The generation of inflow scenarios is generally 
carried out by models that try to produce synthetic 

data having statistical characteristics as close as 
possible to the historical inflow series. This study 
uses a model based on the well-known artificial 
neural networks, which have been applied 
successfully to solving reservoir operating problems 
in Matsuyama2), 3). The network employed is an input 
delayed artificial neural network (IDNN). IDNNs are 
dynamic artificial neural networks capable of 
accounting for nonlinearities and representing 
temporal information of input sequences, which 
make them very suitable for time series modeling4). 
   This work investigates the use of an IDNN model 
for the synthetic generation of monthly inflows to the 
reservoir that supplies Matsuyama. Besides the 
comparison with the historical series, the statistics of 
the IDNN-generated inflows are also compared with 
those of synthetic series generated by a second-order 
autoregressive (AR-2) model. 



 

2. INPUT DELAYED NEURAL NETWORK 
(IDNN) MODEL 

 
   IDNNs contain two components: a memory and an 
associator. The memory is responsible for holding 
the past information, which in this study is composed 
of the two previous inflows or inputs. The associator 
is a multilayer perceptron network that relates the 
memory with the desired output, i.e., the current 
inflow. Thus, the memory component represents the 
temporal information and the associator accounts for 
the nonlinearity, making the IDNNs very suitable for 
time series modeling. 
 
(1) Architecture 
   The architecture of the network for each month is 
formed by the input layer, one hidden layer and the 
output layer. The input layer is composed of two 
neurons, which are the two previous inflows. The 
number of neurons in the hidden layer is determined 
based on a trial-error procedure. The best training 
results were achieved with five neurons in the hidden 
layer. The current inflow is the single neuron of the 
output layer. 
 
(2) Topology 
   For neural networks, not only the way neurons are 
implemented but also how their interconnections 
(topology) are made is important. In this study the 
network topology is constrained to be feed-forward, 
i.e., the connections are allowed from the input layer 
to the hidden layer and from the hidden layer to the 
output layer. Figs. 1 and 2 illustrate the network 
topology of this study and the details of a neuron in 
the hidden layer, respectively. 
   In this network, each element of the input vector is 
connected to each neuron in the hidden layer. The ith 
neuron in the hidden layer has a summation that 
gathers its weighted inputs and bias to form its own 
scalar output or induced local field. Each induced 
local field is submitted to an activation function so 
that they become the inputs of the output layer. The 
unique neuron in the output layer also has a 
summation that gathers its weighted inputs (from the 
hidden layer) and bias to form its induced local field. 
This induced local field is then submitted to the 
neuron activation function and becomes the final 
output or current inflow. 
 
(3) Activation functions 
   Continuous and differential functions are necessary 
for relating inputs and outputs of the artificial neural 
networks. According to Haykin5) the sigmoid 
function is a good activation function for each neuron 
due to its generally accepted behavior. The 
tan-sigmoid function is chosen as the activation 

function for the hidden neurons. For the output layer 
neuron, a linear activation function is used.  
 
(4) Training process 
   The original data (input and desired outputs) are 
conveniently standardized and then scaled before the 
training in order to improve the efficiency of the 
IDNN6). The standardization process consists of 
removing seasonality in the mean and variance. The 
scaling function scales the inputs and targets of the 
IDNN so that they fall in the range [-1,1].  
   The training is performed by a back-propagation 
algorithm which has been successfully applied to 
water resources systems. In this approach, the Scaled 
Conjugate Gradient (SCG) method is used for the 
back-propagation. A detailed explanation of the SCG 
method is provided by Moller7). The network training 
is supervised, i.e., the series of weights between the 
neurons and the bias are adjusted through the 
iterations (epochs) in order to fit the series of inputs 
to another series of known outputs. The training also 
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Fig. 1 Topology of the IDNN. 
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Fig. 2 Details of a neuron in the hidden layer. 

 



 

occurs in the batch mode. In this mode the weights 
and biases are updated only after the entire training 
set has been applied to the network. 
   The convergence of the training process occurs 
when the mean squared error between IDNN outputs 
and desired results is less than a specific minimum 
value. 
 
(5) Generation of the synthetic series 
   The synthetic monthly inflows are obtained by two 
components: one is deterministic and the other is 
stochastic.  
a) Deterministic component 
   The IDNN results are the deterministic component 
for the generation of synthetic inflows. The IDNN 
series of outputs for each month of the year are 
obtained from the calibrated IDNN model operation 
as follows: 
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where t is the time index; i is the neuron index in the 
hidden layer; ai(t) is the induced local field of the ith 
neuron in the hidden layer at time t; xj(t) is the value 
of the jth neuron in the input layer at time t; IN is the 
number of input neurons; wi,j is the weight between 
the jth input neuron and the destination neuron i; bi is 
the bias of the ith neuron in the hidden layer; o(t) is 
the IDNN output at time t; φ2 is the linear activation 
function for the neuron in the output layer; HN is the 
number of hidden neurons; φ1 is the sigmoid 
activation function for all neurons in the hidden 
layer; wh,i is the weight between the ith input neuron 
(from hidden layer) and the destination neuron h; bh 
is the bias of the output layer neuron; O is the set of 
results from the IDNN model; and n is the number of 
months to be generated by the model. The 
deterministic component is then obtained by 
applying the inverse of the scaling function: 
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in which o’(t) is the output for the inverse of the 
scaling function at time t; kmax and kmin are the 
maximum and minimum values in the series of 
known outputs used for calibrating the IDNN, 

respectively; and O’ is the deterministic component. 
b) Stochastic component 
   When the set of standardized IDNN outputs and 
observed results are compared, the difference 
between them leads to a residuals series. Statistical 
analysis of the residuals shows that they can be 
modeled as gamma distributions. A fitting of the 
residuals series is provided, and the posterior random 
generation of these values is the stochastic 
component of the model. 
c) Inflow series generation 
   The synthetic monthly inflow series is found by the 
following equations: 
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where r is the series of random generated residuals 
obtained from a properly fitted gamma distribution; 
r(t) is the residual at time t; m is the index for months 
of the year (January, February, …, December); S(m) 
is the standard deviation for month m; M(m) is the 
mean for month m; Inf(t) is the synthetic monthly 
inflow at time t (this equation contains the inverse 
functions of the standardization process); and INF is 
the series of synthetic monthly inflows. 
   Like the fitting and generation of residuals series, 
the IDNN model was implemented in Matlab 
environment. 
 
 
3. GENERATION OF THE SYNTHETIC 

SERIES 
 
   The IDNN model was applied for generating 
synthetic monthly inflows to the Ishitegawa Dam 
reservoir. This reservoir supplies water to the city of 
Matsuyama, located in Ehime, Japan. The reservoir 
is also used for irrigation and flood control. Twenty 
years of historical monthly inflows were used for 
calibrating the IDNNs for each month of the year. 
After the determination of the deterministic 
component by Eqs. (1-5), the synthetic series were 
obtained by the random generation of the fitted 
gamma distribution applied to Eqs. (6-8).  
   In order to check the performance of the IDNN 
model, 100 synthetic series of monthly inflows (each 
20-year long) were generated and its statistics were 
compared with those from the historical data. In 
addition, a second order autoregressive model 
(AR-2) was applied for comparison. Same 
pre-processing of data series was used for both AR-2 
and IDNN model. 
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Fig. 3 Comparison of monthly mean of the historical series with (a) IDNN and (b) AR-2 synthetic series. 
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Fig. 4 Comparison of monthly standard deviation of the historical series with (a) IDNN and (b) AR-2 synthetic series. 
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Fig. 5 Comparison of monthly skewness coefficient of the historical series with (a) IDNN and (b) AR-2 synthetic series. 

   Statistical characteristics such as mean, standard 
deviation and skewness coefficient of the IDNN and 
AR-2 synthetic data were compared with those from 
the historical series. Figs. 3-5 illustrate graphs 
comparing monthly mean, standard deviation and 
skewness coefficient of the historical series with the 
ones found by the IDNN and AR-2 synthetic series. 
Annual statistics for historical and synthetic series 
are presented in Table 1. The histograms of the 

 

Table 1  Annual statistics for historical and synthetic series. 
 

 
Series 

 

Mean 
(m³/s) 

Standard 
Deviation (m³/s) 

Skewness 
Coefficient 

Historical 332.52 222.63 1.77 
IDNN 346.82 215.63 1.99 
AR-2 367.07 171.23 0.95 
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Fig. 8 Histogram of the AR-2 synthetic series. 
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Fig. 6 Histogram of the historical series. 
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Fig. 7 Histogram of the IDNN synthetic series. 

historical and synthetic series are presented in Figs. 
6-8. 
   The results showed that the monthly and annual 
statistics found by the synthetic-IDNN series were 
very close to those showed in the historical series.  
   The AR-2 model also generated synthetic series 
with satisfactory performance for most monthly 
statistics. However, poor accuracy was found in the 
monthly skewness coefficients and annual statistics. 
Both models showed histograms similar to the one 
obtained by the historical series. 

   Comparing all statistics from the IDNN-generated 
series with the ones from the AR-2 model, it can be 
noticed that the IDNNs’ capabilities of identifying 
the nonlinear trends among the hydrologic variables 
and representing temporal information overcomes 
the pure autoregressive technique. Since the IDNN 
procedure was capable of fitting the historical series 
better than the AR-2 model, it can be said that the 
proposed approach may produce more reliable 
synthetic series and hence more consistent data for 
testifying reservoir optimization techniques and 
solving hydrological problems. 
 
 
4. GENERATION OF SYNTHETIC 

INFLOW SCENARIOS 
 
   Optimization techniques for the operation of 
Ishitegawa Dam are going to be tested with possible 
reservoir inflow scenarios. 
   Synthetic inflow scenarios were generated by the 
IDNN (described in Section 2) and AR-2 models to 
show the different possibilities of inflow occurrence. 
As an example, Figs. 9-10 show data for a 5-scenario 
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Fig. 9 Generated scenarios from 1989 until 1990 by the IDNN model. 
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Fig. 10 Generated scenarios from 1989 until 1990 by the AR-2 model. 

generation for the years of 1989-1990 by IDNN and 
AR-2 models, respectively. The observed inflow is 
also provided for comparison. 
   Any number of possible synthetic scenarios can be 
carried out by the IDNN or AR-2 models. However, 
the annual and monthly statistics (Section 3) obtained 
from the scenarios generated by both IDNN and 
AR-2 models suggest that the first may produce more 
trustworthy inputs to the optimization models than 
the AR-2. 
 
 
5. CONCLUSIONS 
 
   An input delayed artificial neural network was 
applied for generating synthetic monthly inflow 
scenarios for Ishitegawa Dam, which is the reservoir 
that supplies the city of Matsuyama, in Ehime 
Prefecture. The scenarios will be used by 
optimization techniques that have been developed for 
the reservoir operation. 
   The monthly and annual statistics (mean, standard 
deviation and skewness coefficient) obtained by the 
IDNN model were very close to the ones presented in 
the historical data. Moreover, the synthetic inflow 
histogram was similar to that from the observed data. 
   The comparison between IDNN and AR-2 models 
indicates that the IDNNs’ capabilities of accounting 
for nonlinearities and representing temporal 
information produced more reliable synthetic series 
than the statistical method. As conclusion, the results 
suggest that the IDNN model is suitable for 

generating the synthetic monthly inflow scenarios 
needed by the optimization techniques for the 
operation of Ishitegawa Dam. 
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