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     Regionalisation of hydrological model parameters is a simple approach to model ungauged basins. 
However, uncertainties in model parameters and catchment attributes hinder the regionalisation. In this 
context, this study proposes a methodology for modeling ungauged basins by pairing the regional model 
with the posterior distribution of parameters. The performance of regional models are evaluated by 
comparing the loss in performance and quantifying the uncertainty induced on the result of 
regionalisation. The study revealed the reduction in inconsistency among various regional models and 
improvement in performance while the results of regionalisation are constrained by regionalised ranges of 
parameters. Furthermore, the non-parametetric bootstrap methodology used to quantify of the uncertainty 
in regional models reveals that the indirect calibration method induced more uncertainty on the result of 
regionalisation compared to the conventional regionalisation schemes investigated in this study. 
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1. INTRODUCTION 
 
     The reliable prediction of streamflow at sites 
without adequate data quality and quantity remains 
a largely unsolved problem1). To address such 
problems, the Prediction in Ungauged Basins (PUB) 
was initiated by International Association of 
Hydrological Sciences (IAHS) widening the scope 
of such kind of studies2). Among various approaches 
to model ungauged basins, regionalisation is 
considered as one of the most popular approach. 
The regionalisation is identification of functional 
relationship between the optimal model parameter 
set and the catchment attributes (CAs) 1), 3), 4). Most 
of the regionalisation schemes follow a two-step 
approach: (a) estimation of parameters of 
hydrological models (MPs) at various gauged site, 
followed by (b) identification of relationship 
between MPs and CAs. Conceptual hydrological 
models are popularly used for regionalisation, and 
parameters of which are determined by calibrating 
model against observed data, but the calibrated MPs 
are not unique due to the inability of calibration 
procedures to uniquely identify a single best 
parameter set, errors associated with the system 
input and output, and model structural errors. All 

these source of uncertainty results in a scattered 
relationship between MPs and CAs, thus making 
regionalisation attempt week. Calibration of 
hydrological models (here after referred as local 
model interchangeably) and the construction of 
regional models both introduce uncertainties1), 4), 5) 
that are inevitably propagated into the model 
prediction.  
     Wide ranges of regional model structure have 
been implemented in the past to model ungauged 
basins1), which however, met with limited success 
so far mainly due to the poor identifiablility of 
parameters of local models. Within this context, this 
paper aims to develop the framework for 
regionalisation by: (a) making model parsimonious 
(b) implementing robust methods to calibrate model 
parameters (c) complementing the result of 
regionalisation with the information obtained from 
the posterior distribution of MPs and (d) evaluating 
the performance of various regional model 
structures by considering both the loss in 
performance (decrease in the model performance 
when the parameters obtained from regionalisation 
schemes are used instead of locally calibrated 
parameters), and the magnitude of uncertainty 
induced by regional models in model prediction.  



 

2. METHODOLOGY 
 
The proposed methodology for the development of 
an improved framework for regionalisation is as 
follows: (1) select the number of gauged basins with 
flow records extending over several years, and 
corresponding CAs that are readily available and 
relevant with the structure of hydrological model (2) 
identify both the best probable MPs and local 
posterior distribution of MPs for each basin (3) 
evaluate the performance of various regionalisation 
schemes using, Multiple linear regression (MLR), 
Artificial neural network (ANN), multiple 
polynomial regressions (MPR), Partial least square 
regression (PLSR) and indirect calibration 
methodology (4) regionalize the ranges of MPs 
(calculated from identified posterior distribution of 
MPs) with CAs, assuming that the basins with 
similar physical characteristics and data aspect will 
have similar ranges of parameters (4) the result of 
regionalisation is constrained by the ranges of 
parameters and (5) quantify the uncertainty induced 
by the parameters of regional model in the result of 
regionalisation.  
 
(1) Hydrological model 
     TOPMODEL which is a variable contributing 
area physically-conceived semi-distributed 
hydrological model6) is selected in this study. 
TOPMODEL can be applied more accurately to 
catchments where the assumptions of the model are 
justified viz. primarily wet catchments that have 
shallow, homogeneous soils. For this study, the 
modified version of TOPMODEL was used. The 
modified version uses soil topographic index 7) 
which provide more flexibility and capability to deal 
with heterogeneity of the catchment. In addition, the 
maximum root zone storage parameter was directly 
calculated from root zone depth and soil properties6) 
instead of calibration. This will increase the 
identifiablility of the parameter while reducing the   
number of parameter 1). Only three parameters: 
lateral saturated transmissivity, To (m2/h), time 
constant, Td (h/m), and decay parameter, m (m) 6) 
were calibrated in this study.  
 
(2) Study area  
     The study area consists of 26 basins located in 
different geographic and climate zones (Table 1). 
The basins located in various climates and 
geographic region were selected to incorporate wide 
range of basin attributes which are outlined in Table 
2. Other data includes: The 90m DEM from Shuttle 
Radar Topography Mission (SRTM), soil data from 
Food and Agriculture Organization (FAO), and land 
use data from International Geosphere-Biosphere 
Program (IGBP). Most of study basins are humid 

Table 1 Description of study basins and calibrated model 
parameters 

Calibrated model 
parameters Country Catchment 

ID 
Area 
km2 m To Td 

145018 81 0.23 2.5 1.07 
6204016 104 -- -- -- 
204017 82 0.06 4.95 1.23 
218001 93 0.09 1.04 4.99 

1Australia 

302200 448 0.24 1.03 1.08 
330 1980 0.13 6.08 1.00 
795 1148 0.03 5.64 7.81 
390 554 0.07 3.21 1.22 

2Nepal 

6395.5 683 -- -- -- 
Arakawa(Yorii) 927 0.02 4.00 9.09 
6Ukaibashi 487 -- -- -- 3Japan 

Torinkyo 1095 0.04 4.00 1.22 
23006 331 0.02 3.40 0.10 
27034 510 0.02 4.80 5.48 
627035 282 -- -- -- 
62001 893 0.02 6.21 0.30 

4UK 

66011 344 0.01 4.25 8.90 
J3024010 43 0.08 4.86 2.31 
J4124420 32 0.14 5.49 1.10 
6K0744010 181 -- -- -- 
J4712010 142 0.04 6.23 1.45 
H2001020 98 0.04 4.20 3.46 
Y5615030 297 0.05 4.82 2.39 
K0753210 371 0.04 4.48 3.10 
K0813020 193 0.04 4.20 1.28 

5France 

V3517010 25 0.04 8.72 2.28 
1catchments located in eastern Australia, and data were obtained 
from http://www.stars.net.au/tdwg/?datasets, 2catchments 
located in Middle mountain physiographic region of Nepal and 
data were obtained from Department of Hydrology and 
Meteorology (DHM), Nepal, 3catchmetns located in Japan, and 
data were obtained from Ministry of Land, Infrastructure and 
Transport (MLIT), Japan, 4catchments located in UK, and data 
were obtained from http://www.ceh.ac.uk/data/nrfa/index.html, 
5 located in France, and data obtained from Model Parameter 
Estimation Experiment (MOPEX)-France,6catchments used for 
the validation of regionalisation schemes. 
 

Table 2 Catchment attributes selected for regionalisation 

 
with a wetness index greater than 1. 
  
(3) Model Calibration 
a) Multiobjective Optimization 
     In this study, multiobjective shuffled complex 

Indices Catchment attributes (CAs) 

Physiographic 

Area, drainage density, average basin slope, 
basin shape factor, average topographic 
index, shape and scale parameter of gamma 
distribution fitted to the distribution of 
topographic index, average saturated 
hydraulic conductivity (basin scale), 
average maximum root zone depth 
calculated using soil and land cover 
map6)(basin scale) 

Climatic 

Annual average rainfall, variance of 
monthly rainfall, annual average potential 
evapotranspiration (PET), wetness index 
(calculated as the ratio of average annual 
rainfall to average annual PET) 



 

evolutionary metropolis (MOSCEM-UA) is used to 
calibrate the parameters of the local model as 
MOSCEM-UA allows the simultaneous estimation 
of best parameters along with the underlying 
posterior distribution of parameters (assuming the 
initial Gaussian assumptions made for hydrologic 
parameters) for hydrological models having only 
few parameters and that requires less model 
evaluation time8). Earlier work on automatic 
calibration of hydrological models suggests that 
single objective functions are not adequate to 
reproduce different aspects of the hydrograph, 
which led to the calibration being treated as a 
multiobjective problem. In this context, 
evolutionary algorithms (EA’s) have been 
recognized as possibly well suited to multiobjective 
optimization since they can search for multiple 
solutions in parallel. Among many EA’s developed, 
the non-dominating sorting genetic algorithm 
(NSGAII) developed by Dev et al. 9) and 
MOSCEM-UA developed by Vrugt et al. 10) are two 
popular multiobjective EA’s based on the Pareto 
domination approach. 
  
b) Objective Function     
     The identification of a best parameter set is 
necessary for meaningful prediction of flow and 
parameter regionalisation. This can be better 
realized by using multiple objective criteria during 
calibration, and the objective functions used in this 
study are as follows: 
1) The Nash Sutcliffe efficiency (NSE), it assumes 

that errors are normally distributed and 
homoscedastic. 

2) NSE for the transformed flow is used to consider 
the heteroscedastic variance in flow. The flow is 
transformed explicitly before evaluating the 
objective function11) by 
using, [( 1) 1]/z y λ= + − λ  where λ =0.3, z is 
the transformed flow, and y is the observed flow  

3) NSE for low flow and NSE for peak flow 12).  
 
(4) Regionalisation schemes 
     The regionalisation schemes can be broadly 
classified as conventional approach and improved 
variants of conventional approach1). The 
conventional approach, here referred to as “direct 
calibration method”, at first, calibrates the 
parameters of hydrological model at all site 
independently, and then attempts to identify the 
functional relationship   between MPs and CAs 
(Fig 1(a)). The identified functional relationship 
between MPs and CAs are later used for the 
prediction of model parameters at ungauged basin 
from the measurable CAs. These approaches despite 
being straight forward are hindered by weak 

( | )Hθ = β Φ

( | )H eθ = β Φ +

( | )Hθ = β Φ

 
Fig.1 Regionalisation schemes: a) Direct calibration method, 
and b) Indirect calibration method, where θ is the vector of 
model parameters, β is the vector of regional parameter,Φ is the 
vector of catchment attributes, H (.) is a functional relationship 
between θ and β, I are input time-series, and e is the error term. 
 

identifiablility of MPs. Regionalisation schemes 
used in this study which fall under direct calibration 
methods are, MLR (Equation 1), MPR (Equation 2), 
PLSR and ANN.  
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where θj is jth model parameter,Φi  is the ith CAs, βi,j, 
β1i,j, β2i,j are the ith regional parameter of regression 
equation for jth model parameter, m is the number of 
CAs (Table 2), and aj is the constant. Model 
structure based on MLR and MPR were used in this 
study due to their simplicity. On the other hand, 
regionalisation scheme based on ANN were also 
used, as it is more flexible modeling structure that 
can easily account for nonlinearities and interaction 
effect. The ANN used in this study consists of single 
input, output and hidden layer. In addition, the 
partial least square regression13) (PLSR), a method 
for constructing prognostic models when the factors 
are many and highly collinear, is also used in this 
study. Similar to principal components regression 
(PCR), PLSR produce factor scores as linear 
combinations of the original predictor variables, so 
that there is no correlation between the factors score 
variables used in the predictive regression model. 
Contrary to PCR, PLSR produces the weight matrix 
reflecting the covariance structure between the 
predictor and tries to extract those latent factors that 
account for most of the variance.  
     Indirect calibration method is an improved 
variant of conventional approach which attempts to 
calibrate the model at all sites simultaneously, while 
concurrently attempting to achieve the best possible 
regional relationship between MPs and CAs (Fig 
1(b)). In the indirect calibration method the 
approximate functional relationship between model 
parameter and CAs was assumed first. Then the 



 

parameters of such functional relationships were 
obtained using multiobjective calibration, which can 
be stated as: 

* * *
1 2 ( ) { ( ), ( ),.., ( )}    (3)qMaximized F f f fθ = θ θ θ  

where *
,

1
( ) ( ( )) /

n

q i q
i

f f n
=

θ = θ∑  is the average value of 

the qth objective function(sec 2(3)b), n is the number 
of basins, q is the number of objective function, 
fi,q(θ) is the value of qth objective function for ith   
basin. The multiobjective method (NSGAII was 
used to calibrate the regional parameters in the 
indirect method) results in Pareto optimal set of 
functional relationships, so the compromised 
regional parameter set was used to identify the 
single best functional relationship to estimate MPs 
for ungauged basins.  
 In calibration phase, 21 study basins were used 
whereas 5 basins (see table 1) were used for the 
appraisal of the performance of regionalisation 
schemes. For the evaluation purpose, two metrics 
were used: (1) loss of model performance and (2) 
uncertainty induced by the regional parameters on 
model prediction. 
 
(5) Uncertainty in regional models  
     To assess the uncertainty due to weighting 
parameter on regionalisation result, the 
non-parametric bootstrap method was used. In this 
method, the sub sample of size 19 basins is 
repeatedly used for regionalisation. Each sub sample 
is a random sample with replacement from the full 
sample of size 21. This will lead to the realization of 
numerous sets of model parameter for each basin 
and subsequently results in an ensemble of 
simulated hydrograph. This combination leads to the 
multiple realizations of functional relationships for all 

schemes (ANN, MLR, MPR and PLSR) which results 
in a set of regionalized MPs for each basin. These 
regionalized model parameters results in the ensemble 
of simulated hydrograph which is here used as the 
measure to quantify the uncertainty inherent in 
regionalisation schemes and compare various schemes. 
In addition, the indirect calibration also results in a 
multiple set of regional parameters for similar 
performance resulting in uncertainty in simulated 
flow. Similar to direct calibration method, the 
ensemble of the simulated flow resulted by the use 
parameter that lie in Pareto optimal front were used 
here to enumerate the uncertainty in the indirect 
calibration method. 
 
3. RESULTS AND DISCUSSION 
     The parameters of modified TOPMODEL 
were calibrated using 3 years of daily hydro- 
meteorological data for all selected catchments 
using MOSCEM-UA (see Table 1). Only a small 
number of CAs was correlated with MPs at the 10% 
significance level. Parameter m is found to be 
correlated with wetness index (-0.48), average 
annual rainfall (AAR) (-0.32), and average 
maximum root zone depth (ASR) (0.28). Parameter 
To is found to be correlated with, ASR (-0.36), 
mean elevation (0.28) and basin area (0.41). 
Similarly, Td is found to be correlated with AAR 
(0.56), variance of monthly rainfall (0.77), drainage 
density (-0.5) and average basin slope (0.48). The 
performance of regionalisation schemes measured 
with respect to NSE over both calibration and 
validation are shown in Fig. 2(a). Regionalized 
values of MPs obtained from ANN, MLR, MPR and 
PLSR resulted in high inconsistency in the model 
performance (NSE). The ensemble performance for 
regionalisation schemes are shown as the shaded 
region in Fig. 2(c). Considering the result over the 
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Fig.2 Performance of regionalisation schemes: (a) Unpaired with prior ranges of parameter (UPR), (b) Paired with prior ranges of 
parameters (PPR), (c) Ensemble performance (NSE) with and with out pairing regional models with prior ranges, and (d) Comparison 
of  loss in model performance for regionalisation schemes. 



 

calibration period, PLSR and MLR scantily 
captured the underlying relationship between MPs 
and CAs resulting in high loss in performance. 
Similarly, the regionalized parameters obtained 
from ANN resulted in higher loss in model 
performance in basins considered for validation, 
though it closely followed the calibrated model 
performance on basins which were included for the 
calibration of regional model. Performances of MPR 
for both calibration and validation phase are 
apparently better. The marginal improvement in 
performance is observed (see standard error estimate 
for regionalize MPs in Table 3, and performance 
loss (%) in Fig 2(d)) with the averaged values of the 
regionalized parameters obtained from various 
structures, referred to as model mean (MM). Over 
calibration and validation, the performance of 
indirect calibration with respect to NSE was only 
marginally worse than the results obtained from 
calibrated model parameters (Indirect in Fig. 2(a)), 
however provided unbalanced model performance 
(improved performance in some basins and poor in 
others). This unbalanced model performance could 
be mainly due to the use of the average objective 
function as objective criteria to calibrate the 
parameters of regional models. 
  
(1) Pairing of the regional model with prior 
ranges of parameters 
    In order to minimize the inconsistency 
observed among regionalisation schemes, and to 
improve their predictive performance, pairing the 
result of regionalisation with the information from 
posterior distributions of parameters is investigated. 
To estimate the posterior distribution of parameters, 
MOSCEM-UA was used for the calibration of MPs, 
which estimates best MPs along with the posterior 
distribution of parameters. Using the estimated 
posterior distribution of MPs, the ranges of MPs 
were estimated for each basin. In order to estimate 
the ranges of MPs for ungauged basins from easily 
measurable CAs, the statistical relationship between 
ranges of MPs and CAs was determined using ANN. 
The performance of ANN in simulating the ranges 
of parameters was found to be efficient during 
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calibration and sensible during validation. The 
regionalized ranges (here after referred as prior 
ranges interchangeably) of parameters were then 
used to inflict constrains on the result of 
regionalisation. Fig. 2 (b) shows the performance of 
regionalisation schemes constrained by the prior 
ranges of parameters. The shaded zone in Fig. 2 (c) 
is the ensemble of model performance (NSE) 
obtained from regionalized MPs obtained from 
various regionalisation schemes unconstrained from 
prior ranges of MPs (UPR). The region within 
continuous lines in Fig.2(c) is the ensemble model 
performance (NSE) when the regionalized MPs 
were paired with the prior range of parameters 
(PPR). The ranges of ensemble performance for 
constrained regionalisation are narrowed compared 
to the scheme unpaired with prior ranges of MPs. 
This narrowing in the performance range implies the 
reduction in the inconsistency in model 
performances among various regional model 
structures. In order to compare the performance of 
regionalisation schemes with and without prior 
ranges of MPs objectively, the loss in model 
performance and standard error in the estimate of 
regionalized value of MPs were used. The loss of 
model performance shown in Fig. 2(d), and standard 
error estimate (Table 2) of the regionalized MPs 
obtained from regionalisation schemes with and 
without the use of prior ranges of MPs reveals the 
apparent improvement in regionalisation when prior 
ranges of MPs were used.  
     To enumerate the uncertainty, the 
non-parametric bootstrap method as explained 

Table 3 Standard error estimates for regionalized model parameters for regionalisation schemes paired with prior ranges (PPR) 
and schemes unpaired with prior ranges (UPR). 

Standard error for the parameters estimated from regionalisation schemes 
Calibration of regionalisation schemes Validation of regionalisation schemes 

m To Td m To Td 
Regionalisation 

schemes 
PPR UPR PPR UPR PPR UPR PPR UPR PPR UPR PPR UPR 

ANN 0.004 0.003 0.33 0.09 1.08 1.081 0.069 0.078 2.95 2.897 3.955 4.017 
MLR 0.031 0.042 1.21 1.658 2.047 2.234 0.044 0.047 1.632 1.361 4.174 5.629 
MPR 0.025 0.033 0.619 0.89 2.045 2.18 0.028 0.027 3.02 3.762 3.989 4.222 
PLSR 0.03 0.04 0.961 1.247 2.03 2.182 0.046 0.054 2.456 2.44 4.02 5.124 

Indirect method 0.024 0.024 1.235 1.235 4.175 4.175 0.026 0.026 1.401 1.401 5.677 5.677 
MM 0.022 0.027 0.759 0.826 1.598 1.65 0.019 0.017 1.204 1.205 1.895 2.214 



 

earlier was used for ANN, MLR, MPR and PLSR. 
However, for indirect calibration method, Pareto 
optimal regional parameter sets were used to 
quantify the uncertainties. In both approaches, the 
average width of the interval of simulated flow 
(AWISF) expressed in terms of percentage (%) in 
all basins (calculated as the ratio of average width of 
ensemble hydrograph to average regionalized flow) 
was used as a measure to quantify the uncertainty in 
model prediction. For all schemes, high value of 
AWISF is observed for two Australian basins 
(national ID 145018 and 302200). These two basins 
have appreciably lower runoff coefficients and 
wetness index compared to other basins, so they 
were removed from further discussion. As the 
variation in the AWISF among schemes can be used 
as a measure to compare various schemes, so the 
value of AWISF were obtained for all 
regionalisation schemes which is shown in Fig. 3. 
The values of AWISF were significantly higher for 
indirect method with an average of 38% compared 
to MPR (12%). For validation, MLR (15%) and 
MPR (16%) resulted minimal uncertainty in flow 
compared to PLSR (28%), ANN (29%) and indirect 
method (32%). Indirect calibration resulted in lesser 
performance loss, but induced higher uncertainty in 
the simulated flow compared to direct calibration 
method. In addition, ANN induced larger 
uncertainty in flow compared to MLR and MPR, 
which could be due to a larger number of free 
parameters. 
 
4. CONCLUSION 
 

The following conclusions are drawn from this 
study:  
• Averaging the regionalized model 

parameters obtained from various schemes 
(MLR, ANN, MPR and PLSR) along with 
indirect calibration methodology 
demonstrated the prospect of their 
application in modeling ungauged basin.  

• Constraining the result of regionalisation 
schemes by prior ranges of MPs apparently 
reduce the inconsistency among regional 
model and improved the predictive 
capability.  

• The effect of uncertainty in the parameters 
of regional models on simulated flow varied 
in an average from 12 to 38% among 
regionalisation schemes considered.  

• Indirect calibration resulted in lesser loss in 
model performances, but the uncertainty 
induced in simulated flow was highest 
compared to direct calibration method, and 
among direct calibration methods, ANN 

resulted in the highest uncertainty in model 
prediction compared to regression based 
schemes.  

• The uncertainty induced by regionalisation 
schemes on simulated flow along with loss 
in model performance is indispensable for 
the comparison of various regionalisation 
schemes. 
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