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    The objectives of this study are to analyze the influence of systematic and random error in rainfall 
data, discharge data, and the spatial representation of rainfall data on the performance of a distributed 
hydrological model, BTOPMC. A framework for uncertainty analysis was developed using a Monte 
Carlo approach, which was applied to the Kalu River basin in Sri Lanka. Findings show that a systematic 
error exceeding +/-10% in rainfall or discharge data is detrimental to model results. A random error with 
standard deviation is equal to 10% of rainfall or discharge is not substantial. Calibration of parameters 
can compensate for some error. The impact of systematic error in rainfall in terms of Nash-Sutcliffe 
Efficiency (NSE) is higher than that in discharge. The impact of random error in discharge in terms of 
NSE is higher than that in rainfall. The impact of the random error is the lowest for the gauge network of 
the highest density, but the impact of systematic error is not the lowest for this case.  
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1. INTRODUCTION 
 
   The nature of hydrological model is inherently 
imperfect, which leads to the uncertainty in the 
prediction of model results. The sources of 
uncertainty in hydrological modeling are:  data 
(input data and data for calibration), parameters, and 
model structure. In uncertainty analysis researches, 
most of the studies focus on parameter uncertainty. 
Since any model starts with data and most of the 
uncertainty analysis researches in hydrology do not 
give much attention to data uncertainty, the 
uncertainty in data is the primary focus of this study.  
   Rainfall and discharge data are very important 
data in hydrology. In most of the hydrological 
modeling, observed rainfall is assumed to be exact 
and the uncertainty in rainfall data is neglected. 
However, rainfall data is very uncertain due to the 
error in measurement and due to the high spatial and 
temporal variability of rainfall. Although discharge 
data is considered to be accurate, it is subjected to 
uncertainty due to error in measurement and 

uncertainty in rating curve.  
   The impact of systematic error (bias) and 
random error in rainfall on hydrological model 
results has been analyzed by few researchers using 
Monte Carlo approach 1),  2). The influence of spatial 
variability of rainfall on the output of model has 
been studied by either generating rainfall using 
stochastic rainfall generator 3) or by using the 
observed rain gauge network 4). A few studies 5) 
have analyzed the effect of discharge uncertainty on 
the performance of hydrological model. There is a 
lack of study on how the systematic and random 
error in precipitation data, discharge data and 
precipitation with different sets of gauge network 
affect the model performance. Therefore, the 
objectives of this study are: (I) to analyze the 
influence of error in point rainfall on hydrological 
modeling results, (II) to analyze the influence of 
error in discharge on the model results, and (III) to 
analyze the influence of error with different gauge 
density on the prediction of discharge. Both 
systematic and random errors are considered. 



 

2. STUDY AREA 
 
   The study area for the research is the Kalu River 
basin (Fig. 1). The Kalu River basin is chosen for 
the research because it has high density of gauge 
network. The drainage area of the basin is about 603 
km2 and it is located in the southwest and south of 
the central highlands in Sri Lanka and lies between 
80.40N-80.60N longitude and 6.530E-6.80E latitude. 
Elevation varies from 100m to 1700m above mean 
sea level. Due to the geographical location, the Kalu 
River basin receives rain during both of the 
monsoons from May to June and from September to 
October. There are seven precipitation gauging 
stations in and around the basin, and there is one 
discharge gauging station. The mean annual values 
of precipitation and discharge (1987-1996) of the 
basin are 3497mm and 2570mm respectively. Since 
the basin is entirely situated in the wet zone, it has a 
high rainfall to runoff response.  
 
3. HYDROLOGICAL MODEL 
 
   The hydrological model used in this study is 
BTOPMC, “Blockwise use of TOPMODEL with 
Muskingum-Cunge routing”. This is a distributed 
hydrological model developed at the University of 
Yamanashi, Japan (refer to Takeuchi et al. 6) for 
detailed description). It is a grid based model, in 
which the study basin can be divided into sub-basins 
to take care of spatial heterogeneity of parameters. 
The runoff generation of BTOPMC is based on the 
TOPMODEL concepts and the routing of flow is 
based on the Muskingum-Cunge routing approach.  
 
4. METHODOLOGY 
 
(1) True set of rainfall, parameters and discharge 
   A set of observed rainfall and observed 
discharge together with other inputs is selected and 
the best set of parameters is identified by calibrating 
the BTOPMC model. The observed rainfall is 
assumed as true rainfall (observed rainfall assumed 
to be free of measurement error); the optimized 
parameters are considered as true parameters (error 
free parameters); and the simulated discharge is 
taken as true discharge (error free discharge).  
 
(2) Monte Carlo approach for uncertainty 
assessment 
a) Assessment of the impact of rainfall 
uncertainty 
   True parameter case: Error is applied to the true 
rainfall and the BTOMPC model is run with 
perturbed rainfall and true parameters. This 
procedure is repeated for each set of perturbed 

rainfall, and the performance of the model with 
different levels of error is assessed. 
   Optimized parameter case: Error is applied to 
true rainfall and for each set of perturbed rainfall, 
parameters of BTOMPC model are calibrated. This 
procedure is repeated for each set of perturbed 
rainfall, and the performance of the model with 
different levels of error is assessed. The purpose of 
this experiment is to examine to what extent the 
parameters can absorb the uncertainty in rainfall. 
   In this study, the parameters of the model are 
calibrated manually. If the parameters are physically 
meaningful, they can be measured in principle. 
However, the hydrological process is highly 
variable in space and time, and it is practically 
impossible to measure the parameters at the spatial 
and temporal resolutions required by the model, 
particularly, the distributed model. As a result, they 
have to be estimated by calibration. 
b) Assessment of the impact of discharge 
uncertainty 
   Error is applied to the true discharge and the 
BTOPMC model is calibrated keeping all other 
inputs at the reference value. This approach is 
repeated for each set of erroneous discharge, and the 
impact of discharge uncertainty on the performance 
of the model is evaluated. 
c) Assessment of the impact of error in spatial 
representation 
   Different sets of gauge networks are selected, 
ranging from one gauge to the maximum number of 
available gauges. Then for each set of gauge 
network, the impact of error on rainfall is assessed. 
 
(3) Error models 
   For systematic error (SE), the following error 
model is used: 

( ) mp XKX += 1    (1) 

where is perturbed variable (rainfall or pX

Fig.1 Map of the Kalu River basin 

 



 

discharge), is true variable (rainfall or 
discharge), and K is coefficient.  

mX

   For random error (RE), the following error 
model is used: 

eσXX mp +=  ;  (2) mrXσ =
where is perturbed variable (rainfall or 

discharge), is true variable (rainfall or 
discharge),  is standard deviation of random 
error, e is normally distributed random error with 
mean equals to zero and standard deviation equals to 
one, and r is coefficient. 

pX

mX
σ

 
(4) Performance indicators 
   To analyze the performance of the model due to 
the systematic and random error in rainfall or 
discharge (for objectives I and II), three indices are 
used: Nash-Sutcliffe Efficiency (NSE), Volume 
Bias (VB), and error in mean annual maximum 
discharge (MaxE). To check the performance for 
overall time series, Nash-Sutcliffe Efficiency (NSE) 
is computed, which is given by the following 
expression:   

( ) ( )( )∑ −∑ −−= 22 /1 mtsimt QQQQNSE  (3) 
where = reference discharge, Q = simulated 
discharge, and = mean of reference discharge. 
To check the mass balance, Volume Bias (VB) is 
computed, which is given by the following 
expression: 

tQ sim

mQ

( ) ∑∑ ∑−= ttsim QQQVB /      (4) 
where = reference discharge and = 
simulated discharge. To check the error in peak 
discharge estimation, error in mean annual 
maximum discharge (MaxE) is computed, which is 
given by the following expression: 

tQ simQ

( ) tmtmsm QQQMaxE /−=      (5) 
where = simulated mean annual maximum 
discharge and Q = reference mean annual 
maximum discharge. 

smQ

tm

   To compute the indices, the reference discharge 
in case of rainfall uncertainty is the true discharge, 
and the reference discharge in case of discharge 
uncertainty is the perturbed discharge.  
   The analysis of the impact of error in rainfall 
with different density (objective III) is the extension 
of objective I. So, the comparison of performance 
for objective III is done in terms of the NSE only. 
 
5. RESULTS AND DISCUSSIONS 
 
(1) True/Reference set of rainfall and discharge  
 To establish true set of rainfall and discharge, time 
series data of 1987 to 1992 was used for calibrating 

the BTOPMC model and the data from 1993 to 
1996 was used for validating the model. The NSE of 
the model for calibration is 84.7%, whereas the NSE 
for validation is 83.5%. VB for calibration is 3.8%, 
and it is -8.5% for validation. Validation result (Fig. 
2) shows that although some peaks are 
underestimated by the model, it has reproduced 
most parts of the hydrograph well.   
   For further analysis, observed rainfall data of 
1987 to 1992 was considered as true rainfall; 
simulated discharge of the same period was taken as 
true discharge; and the optimized parameters were 
considered as true parameters.  
 
(2) Impact of systematic error in rainfall and 
discharge 
   The range of error in rainfall data is 7): wind: 
2%-10%, evaporation: 0%-4%, wetting: 2%-10%, 
splashing: 1%-2%. As the basin is in wet zone, 
evaporation error is not significant. Wetting error is 
also not a major error for automatic gauge. 
Splashing error is minor as due care is taken for 
setting the gauge to prevent splash in and out. Wind 
is the dominant error in rainfall compared to all 
other errors. So, the usual range of error in rainfall is 
considered to be within 10%. The error in observed 
discharge data is around 10% 8),  9). In the discharge 
data, measurement error is around 5% 10) and the 
rating curve error can be taken as 5% 9). In this 
study, systematic error of -50% to +50% in step of 
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of 10% is applied to get a trend of error with 
different levels of errors. As the systematic error 
introduces a consistent bias, the higher the error, the 
worse the model performance. Therefore, this study 
focuses on the impact of error within the usual 
range, i.e. in 10% range for both rainfall and 
discharge.   
   The variation of the NSE due to the systematic 
error in rainfall and discharge is shown in Fig. 3. 
For -/+10% systematic error, the decrease in NSE 
from true model in case of rainfall uncertainty (with 
true parameters) is 6.1% and 5.4%; the increase in 
NSE in case of rainfall uncertainty (with optimized 
parameters) is 3.3% and 2.7%; and the decrease in 
NSE from true model in case of discharge 
uncertainty is 4.1% and 4%. The trend of the NSE 
for all three cases is similar. Although the 
calibration improves the model performance, the 
NSE decreases with the increase of error in either 
direction. The impact of systematic error in rainfall 
with true parameter is higher than that in discharge. 
Since the rainfall is the driving variable, the impact 
is higher. The impact of systematic error in rainfall 
with optimized parameters is lower than that for 
discharge from K = -0.5 to 0.2, and higher than that 
for discharge from K = 0.2 to 0.5. The reason for 
this is that although optimization can absorb some 
error, the impact depends on the method of 
optimization, types of objective function, and the 

length and quality of data set. 
   The variation of the VB due to the systematic 
error in rainfall and discharge is shown in Fig. 4. 
For -/+10% systematic error, the VB in case of 
rainfall uncertainty (with true parameters) is -14.6% 
and 15.3%; the VB in case of rainfall uncertainty 
(with optimized parameters) is -14.7% and 12.3%; 
and the VB in case of discharge uncertainty is 
12.3% and -6.4%. The trend of VB for two cases of 
rainfall is similar, but for discharge it is opposite. 
For systematic error in rainfall, the VB increases in 
the positive direction with the increase of K in the 
positive direction and vice-versa because increase in 
rainfall will increase the volume of runoff and vice 
versa. In case of discharge, VB increases in positive 
direction with the increase of K in negative direction 
and vice versa. As the rainfall is fixed, the water 
balance can not be maintained even after 
optimization if discharge has very high error. This is 
one of the reasons for the trend of VB in case of 
discharge uncertainty. 
   The variation of the MaxE due to the systematic 
error in rainfall and discharge is shown in Fig. 5. 
For -/+10% systematic error, the MaxE in case of 
rainfall uncertainty (with true parameters) is -19.7% 
and 19.4%; the MaxE in case of rainfall uncertainty 
(with optimized parameters) is -1.2% and 6.4%; and 
the MaxE in case of discharge uncertainty is 1% and 
19.7%. The trend of MaxE for all three cases is 
almost similar, with gradual decrease of the MaxE 
in the negative direction of K and the gradual 
increase in the positive direction of K. Error in 
measurement of heavy rainfall obviously amplifies 
the peak error. In case of discharge, although the 
calibration of parameters follows the trend of 
observed hydrograph, the high discharge is not 
usually captured. So, with the increase of error in 
discharge, the MaxE increases. 
   For -/+10% systematic error for both rainfall and 
discharge, the reduction of the NSE is not very high, 
within 10% from true model, but the VB and MaxE 
are in the range of -/+20%. Considering +/-10% VB 
and MaxE as good indicators of performance, it is 
concluded that the systematic error exceeding 
-/+10% degrades the performance of model 
substantially. Calibration of parameters can 
compensate for some systematic error due to curve 
fitting procedure, but the optimized parameters will 
be biased in presence of error in either rainfall or 
discharge. 
 
(3) Impact of random error in rainfall and 
discharge 
   The variation of the NSE due to the random 
error in rainfall and discharge is shown in Fig. 6. 
For r = 0.1, the decrease in the NSE from true 
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model in case of rainfall uncertainty (with true 
parameters) is 0.2%; the increase in the NSE in case 
of rainfall uncertainty (with optimized parameters) 
is 0.01%; and the decrease in the NSE from true 
model in case of discharge uncertainty is 4%. The 
trend of the NSE due to the random error is similar 
for all three cases, with decreasing trend with the 
increase of r. Calibration of parameters with the 
random error in rainfall does not improve the 
performance significantly. The impact of random 
error in discharge is higher than that in rainfall. One 
of the possible reasons for this trend is that in case 
of random error in discharge, there is large error in 
timing or magnitude of high flow. But in case of 
random error in rainfall, as the long term expected 
value of random error is equivalent to zero; and the 
discharge is fixed at true value to compute the 
indices, the effect of random error is less than that in 
discharge. 
    The variation of the VB due to the random 
error in rainfall and discharge is shown in Fig. 7. 
For r = 0.1, the VB in case of rainfall uncertainty 
(with true parameters) is -0.5%; the VB in case of 
rainfall uncertainty (with optimized parameters) is 
0.47%; and the VB in case of discharge uncertainty 
is-0.4%. The trend of the VB with increase of 
random error is similar for the cases of rainfall 
showing gradual increase with the increase of error, 
while for discharge, it is fluctuating. As rainfall is 
the driving variable, the increased random error 
makes the performance deteriorate gradually. 
Hence, the deteriorating trend of the VB. The 
random errors fluctuate around the measured value, 
which is the reason for fluctuating trend of the VB 
in case of discharge uncertainty. 
   The variation of the MaxE due to the random 
error in rainfall and discharge is shown in Fig. 8. 
For r = 0.1, the MaxE in case of rainfall uncertainty 
(with true parameters) is 0.3%; the MaxE in case of 
rainfall uncertainty (with optimized parameters) is 
-0.1%; and the MaxE in case of discharge 
uncertainty is 4.1%. The trend of the MaxE with 

increase of random error is similar for the cases of 
rainfall, but it is fluctuating in case of discharge. 
The reason for this trend is similar to that of the VB.         
   Findings show that the impact of random error 
for r = 0.1 is not significant. The random errors 
fluctuate around the measured value and therefore 
the deviations on average show less spread. This is 
the reason for the insignificant improvement in the 
performance of model after calibrating with 
erroneous rainfall. 
 
(4) Impact of error in rainfall with different 
gauge density 
   The gauge network with 7 rain gauge stations 
(see Fig. 1 for location of rainfall stations with 
gauge number) is considered as a reference gauge 
network (Sref). The following 6 sets of gauge 
networks were considered (based on representative 
of locations): S1 (gauge no. 3), S2 (gauge no. 3, 7), 
S3 (gauge no. 1, 5, 7), S4 (gauge no. 1, 3, 6, 7), S5 
(gauge no. 1, 2, 4, 6, 7), and S6 (gauge no. 1, 2, 3, 5, 
6, 7). The impact of rainfall uncertainty is analyzed 
using true parameters. 
a) Impact of systematic error 
   The variation of the NSE due to the systematic 
error in rainfall for different gauge density is shown 
in Fig. 9. The trend of the NSE for all cases shows 
that the NSE becomes worse with the increase of 
systematic error in either direction. As higher is the 
systematic error, the worse the performance of the 
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model for gauge network of any density. Findings 
show that the impact of the systematic error is not 
the lowest for the case of the gauge network with 
the highest density. This reason for this trend is not 
only related to the errors imposed in the rainfall, but 
also related mainly to the number of gauges, their 
location and the representativeness of the location to 
capture the spatial variability. Even if there is 
rainfall in one station, there might be no rainfall in 
other stations. No rainfall means no error. This is 
one of the reasons for the better performance of the 
low density gauge compared to the high density 
gauge in presence of error. The trend further shows 
that for negative K, the NSE is decreasing slowly, 
but for positive K, the NSE is deteriorating rapidly. 
This asymmetry is due to the non-linear nature of 
the hydrological model.  
b) Impact of random error 
   Fig. 10 shows the variation in the NSE due to 
the random error in rainfall with different gauge 
density. With the increase of the random error, the 
NSE gradually decreases for all cases. The 
performance of the model due to the random error in 
terms of the NSE is the worst for S1 and the best for 
the gauge network with the highest density. In 
between S1 and Sref, the NSE is not necessarily 
better for high density network for some cases, e.g. 
NSE for S2 is better than S3. As the long term mean 
of random error is assumed to be zero, the 

performance of model with high density is high. 
However, similar to the reasoning of systematic 
error case, the performance in some cases for low 
density is better due to the number of gauges, their 
location and spatial coverage of the gauges.   
 
6. CONCLUSIONS 
 
   The main conclusions of the research for the 
Kalu river basin are as follows: The systematic error 
exceeding +/-10% of rainfall or discharge is 
detrimental to model results. The impact of 
systematic error in rainfall in terms of the NSE with 
true parameter is higher than that in discharge. 
Random error with r = 0.1 is not influential to 
model results. The impact of random error in 
discharge in terms of the NSE is higher than that in 
rainfall. Calibration can compensate for some error, 
but the higher errors will make the parameters 
biased. The impact of the random error is the lowest 
for the gauge network of the highest density, but the 
impact of systematic error is not the lowest. 
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