数値移動床による格子型砂防ダム閉塞過程 のシミュレーション NUMERICAL SIMULATION OF BLOCKING PROCESS OF GRID-TYPE DAM BY DEBRIS FLOW

後藤仁志¹・原田英治²・酒井哲郎³・合田健一⁴ Hitoshi GOTOH, Eiji HARADA, Tetsuo SAKAI and Kenichi GODA

¹正会員 工博 京都大学助教授 工学研究科都市環境工学専攻(〒 606-8501 京都市左京区吉田本町)
 ²正会員 工博 豊田工業高等専門学校講師 環境都市工学科(〒 471-8525 愛知県豊田市栄生町 2-1)
 ³フェロー 工博 京都大学教授 工学研究科都市環境工学専攻(〒 606-8501 京都市左京区吉田本町)
 ⁴学生会員 京都大学大学院修士課程 都市環境工学専攻(〒 606-8501 京都市左京区吉田本町)

A maximum diameter of sediment passing a grid is one of the most important condition of a design of gridtype dam. The model which can handle a collision and a contact between sediment particles is effective for a estimation of the blocking limit. Because a contact process of a grid and sediment shows remarkable three dimension characteristics, an introduction of 3D model is required. In this paper, a 3D distinct element method code is introduced to reproduce a blocking limit in previous experiments. A mechanism of a blocking is discussed from the viewpoint of a computational dynamics by estimating a spatial distribution of contact force between sediment particles.

Key Words: *debris flow, grid-type dam, blocking limit, computational dynamics, distinct element method, numerical movable bed*

1. はじめに

出水の規模によらず土石流を総量的に捕捉する不 透過型砂防ダムは,大出水以前に満砂となる確率が 高く,集中豪雨に対する土石流調整に期待通りの効 果を発揮しないことも少なくない.この点を改善す るため,小出水時には土砂の通過を許容する透過型 砂防ダムが考案され,特に,鋼製格子型の砂防ダム に関しては,その土石流捕捉機能に関する研究が蓄 積されてきた.芦田・高橋¹⁾,芦田・江頭²⁾,渡部・ 水山・上原³⁾は,格子間隔Lと砂礫の最大粒径 d_{max} の比が土石流捕捉効果の支配要因であることを水理 実験結果から明らかにしている.また,水山・小橋・ 水野⁴⁾は,系統的水理実験の結果に基づいて,L/d_{max} に加えて土石流先頭部の礫の容積濃度を支配要因と して挙げている.

一方,格子型の砂防ダムの機能評価のための数理 モデルでは,礫間接触による閉塞過程の記述が鍵と なるため,取り扱いは必ずしも容易ではなく,具体 的研究成果が公表されるようになったのは比較的最 近のことである.高橋・中川・里深・王⁵は,格子 と複数の礫によるアーチ構造の形成が閉塞を生じさ せることに注目し,格子部への礫の到着を確率過程 をとして記述するモデルを提案した.水野・水山・南・ 倉岡⁶は,礫間接触を陽に表現するため,個別要素 法⁷⁾を用いたシミュレーションを実施した.高橋ら のモデルでは,格子部への礫の到着のランダム性が 考慮されているものの,礫間接触が直接扱われてお らず,閉塞過程のダイナミックスの側面からすると 個別要素法以外に選択肢はない.水野らの個別要素 法に基づく数値シミュレーションは鉛直2次元場を 対象としているが,格子と礫群の接触過程は顕著な 3次元性を呈することから,3次元モデルの導入が 必須であると考えられる.

そこで本研究では、これまで著者らが開発してきた個別要素法型の移動床シミュレータ(すなわち、数値移動床^{8),9)}を用いて、格子型の砂防ダムの閉塞 過程の3次元シミュレーションを実施し、計算力学 的観点から,閉塞時の礫堆積域内に形成される3次 元的アーチ構造を明らかにする.

2. 数值移動床

個々の砂礫の運動は、水流中の球の運動方程式に 基づいて追跡される.本研究では10万程度の混合 粒径粒子群の追跡が必要であり、閉塞機構の本質は 礫間接触にあることから、計算負荷の低減のため流 体運動との連成計算を行わない.

したがって,静水中の砂粒子運動を扱うことなり, 周囲流体の流速をゼロとした運動方程式

$$\sigma A_3 d_{pi}^{3} \frac{\mathrm{d}\boldsymbol{u}_{pi}}{\mathrm{d}t} = -\frac{1}{2} \rho A_2 d_{pi}^{2} C_D |\boldsymbol{u}_{pi}| \boldsymbol{u}_{pi} + A_3 d_{pi}^{3} (\sigma - \rho) \boldsymbol{g} + \boldsymbol{F}_{plNTi}$$
(1)

$$I_{pi} \frac{\mathrm{d}\boldsymbol{\omega}_{pi}}{\mathrm{d}t} = -\boldsymbol{T}_{pINTi}$$
(2)

を用いる. ここに、 σ : 砂礫の密度、 ρ : 水の密度、 A_2, A_3 : 砂礫の2 次元・3 次元形状係数、 d_p : 砂礫粒径、 u_p : 砂礫粒子速度、 C_p : 抗力係数、g: 重力加速度、 F_{plNT} : 砂礫粒子間相互作用力、 I_p : 砂礫粒子の慣性モー メント、 ω_p : 砂礫粒子の角速度、 T_{plNT} : 砂礫粒子間 のトルクである.

砂礫粒子間相互作用力は,接触状態にある砂礫粒 子間に接平面内とその法線方向に定義したローカル 座標系(ξ , η , ζ)において Voigt 系(バネ-ダッシュポッ ト系)を導入し, (F_{ξ} , F_{η} , F_{ζ})として算定される¹⁰. 例えば, F_{ξ} は,

$$F_{\xi}(t) = e_n(t) + d_n(t)$$

$$e_n(t) = e_n(t - \Delta t) + k_n \cdot \Delta \xi_{ij}$$

$$d_n(t) = c_n \cdot \frac{\Delta \xi_{ij}}{\Delta t}$$
(3)

となる. ここに, e_n :バネによる抗力, d_n :ダッシュポットによる抗力, k_n :バネ定数, c_n :粘性定数, $\Delta \xi_{ij}$: 粒子間の ξ 方向の変位増分, Δt :計算時間間隔である. ローカル座標系において算定された相互作用力は,

$$\begin{bmatrix} F_{plNTxi} \\ F_{plNTyi} \\ F_{plNTzi} \end{bmatrix} = -\sum_{j} [T_{GL}]_{ij}^{-1} \begin{bmatrix} F_{\xi} \\ F_{\eta} \\ F_{\zeta} \end{bmatrix}_{ij}$$
(4)

$$\begin{bmatrix} T_{plNTxi} \\ T_{plNTyi} \\ T_{plNTzi} \end{bmatrix} = \frac{d_i}{2} \sum_{j} [T_{GL}]_{ij}^{-1} \begin{bmatrix} 0 \\ F_{\zeta} \\ -F_{\eta} \end{bmatrix}_{ij}$$
(5)

によって, グローバル座標系 (x, y, z) に変換される. この際の座標変換行列は一般に,

図-1 計算領域

$$\begin{bmatrix} T_{GL} \end{bmatrix}_{ij} = \begin{vmatrix} l_i & m_i & n_i \\ -m_i & l_i & 0 \\ \frac{-m_i}{\sqrt{l_i^2 + m_i^2}} & \frac{l_i}{\sqrt{l_i^2 + m_i^2}} & 0 \\ \frac{-l_i n_i}{\sqrt{l_i^2 + m_i^2}} & \frac{-m_i n_i}{\sqrt{l_i^2 + m_i^2}} & \sqrt{l_i^2 + m_i^2} \end{vmatrix}$$
(6)

$$l_{i} = -\frac{x_{i} - x_{j}}{L_{ij}} \quad ; \quad m_{i} = -\frac{y_{i} - y_{j}}{L_{ij}} \quad ; \quad n_{i} = -\frac{z_{i} - z_{j}}{L_{ij}} \quad (7)$$
$$L_{ij} = \sqrt{\left(x_{i} - x_{j}\right)^{2} + \left(y_{i} - y_{j}\right)^{2} + \left(z_{i} - z_{j}\right)^{2}} \quad (8)$$

と書ける (式 (6) の変換が定義できない $x_i=x_j$ and $y_i=y_i$ のときには、別変換)¹⁰⁾.

混合砂礫の分級現象の数値シミュレーションにも 従来から個別要素法が適用されてきた.後藤・原田・ 酒井¹¹⁾は、2次元モデルを用いてシートフロー漂砂 の鉛直分級を模擬した.牛島・禰津¹²⁾は、3次元並 列計算のフレームワークの先駆的提案を行った.本 研究でも、牛島らと同様に、領域分割法に基づく3 次元並列計算を実施するが、均一砂を対象とした 100万超の粒子群に対して、同様のフレームワーク が有効に機能することに関しては、確認済みであ る⁹.

3. 格子型砂防ダムの閉塞過程の シミュレーション

(1) 計算条件

台形型断面の一様流路に配置された格子型砂防ダ ムに、2粒径混合砂から成る土砂流が到達し捕捉さ れる過程をシミュレーションする.計算領域を、図 -1に示す.流路は全長60.0 mであり、下流端から5.0m の地点に砂防ダムを配置した.ダム上流30.0 m地 点の河道内に河道を塞ぐ鉛直壁によって土砂を堰き

(a) L/dmax=2.5(L=0.5m)

(b) L/dmax=2.0(L=0.4m)

(c) L/dmax=1.5(L=0.3m)

止め,3.0 s 間のパッキング計算を行って重力の作用 下で土砂粒子が安定した接触状態になった後に,鉛 直壁を瞬間的に取り除いて土砂流を発生させた.砂 防ダム近傍の側岸山腹の崩壊によって高含水率の土 砂が短時間に大量に流路に供給された状態を想定し た状況の設定となっている.下流端の境界条件は自 由流出とし,境界外部に流出した瞬間に当該粒子の 運動追跡を打ち切っている.流路の傾斜角は17°で ある.

土砂粒子については、粒径 20.0, 10.0 cm の 2 粒径 を体積比 1:1 で混合しており、投入土砂の総体積は 約 100.0 m³となる。固定壁および格子は、粒径 30.0 cm の粒子を 20.0 cm 重なるように配置して(中心 間距離 10.0cm で)構成し、移動壁(初期の堰き止 め用)には、粒径 10.0 cm の粒子を用いた。粒子総

図-2 格子間隔と閉塞状況

数は、102,000 個であり、計算には PC クラスター (Pentium4(clock 3.0GHz / memory 2GB);1000Base-T ネットワーク)を使用し、8CPUの並列計算で、実 時間にして 30 s の計算に約 80 時間を要した.

閉塞の発生は,格子間隔 L と最大粒径 d_{max} の比に 依存し,閉塞限界が

$$L/d_{\rm max} = 1.5 \ 2.0$$
 (9)

で与えられる¹⁾.本稿では格子間隔を,30.0,40.0, 50.0 cmと変化させ,*L*/*d_{max}=*1.5,2.0,2.5 の3種の条 件のシミュレーションを実施した.

(2) 閉塞限界の再現性

図-2 に, 土砂流がダム部に到達する時刻 t=3.0 s から 6.0 s 間隔で, シミュレーションで得られた瞬

図-3 堆積状況

間像を示す.格子間隔が最も広い L/d_{max}= 2.5 の場合 には,土砂流のダム部に到達以降,格子背後で堆積 (堰き上げ)が生じるが,格子下流への流出は大粒径, 小粒径ともに継続して生じており,格子は,土砂流 の運動量を損失させ,流動性を低下させることには 効果を発揮するものの,土砂の捕捉には有効ではな い結果となった.なお,芦田・高橋¹⁾の実験では, L/d_{max}= 2.5 の場合には,土石流が流下してきた直後 に僅かな堆積を生じるのみで,その後流出するとの 記載があり,シミュレーションの状況と一致する.

次に,格子間隔が最も狭い L/d_{max}= 1.5 の場合には, 土砂流のダム部到達後に下流への僅かな流出は生じ るが,土砂の大半が格子によって捕捉されている様 子が明瞭に示されている.芦田・高橋¹⁾の実験では, L/d_{max}= 1.5 の場合には,土石流はほとんど全て堆積 する(格子に捕捉される)との記述があり,やはり, シミュレーションの状況と一致する.上記の2ケー スの中間状態の L/d_{max}=2.0 の場合には,格子下流部 への流出は生じてはいるが,流砂量は L/d_{max}= 2.5 の 場合より少なく,土砂流のダム部到達からある程度 時間経過した時刻 t=21.0 s には,一部の格子間で閉 塞が生じて,流出が停止している状態が確認できる.

4. 閉塞過程のメカニズム

(1) 堆積の進行過程と分級

図-3は、格子による土砂流の捕捉が顕著な L/d_{max}= 1.5 の場合の流動過程を側方から観測した結果である.図中には,流路中央断面より奥側(上流に向かっ て左側)に存在する土砂粒子のみを表示している. 土砂流の格子部への到達と同時に,格子と衝突した 土砂粒子が急速に減速して格子直上流で堆積厚が急 増する.その後,堆積層は格子間隔の2倍程度で平 衡し,層厚の成長は上流へと伝播する.格子直上流 での大流径粒子の存在位置のパターンを見ると,格 子直上流で層厚が平衡して以降は大きな変化はな く,格子全面で流動がほぼ停止していることを裏付 けている.

さらに、堆積初期から一貫して、顕著な逆グレイ ディングが確認できるが、格子型砂防ダムの既往の 水理実験(例えば、宮沢ら¹³⁾)でも、堆積層における 顕著な逆グレイディングが報告されている. 図-4は, ほぼ流動が停止した時刻 t=21.0 s において、流路中 央付近での大粒径粒子の体積占有率の鉛直分布を示 したものである. 図中の hp は対象地点の堆積層厚で ある. サンプリングは、2d_{max}×2d_{max}の領域で、流 路中央断面を中心に格子直上流(x=0.25m)の地点 と上流部 (x=5.25m の地点) で実施した. 何れの領域 でも逆グレイディングは顕著であるが、大粒径の占 有層の層厚が格子直上流で大きくなっている.本計 算では、ダム部までの流動区間長は 30 m と必ずし も長くはないが、その間にも流動中の逆グレイディ ングに伴って、大粒径が先端部に集積される土石流 と類似の機構が作用し、結果として大粒径占有層厚 に流下方向の差が生じたものと考えられる.

(2) 格子型砂防ダムによる土砂捕捉効果

図-5 は、時刻 t=21.0 s(L/d_{max}= 1.5 の場合に下流への土砂流出がほぼゼロとなる時刻)における各粒径の堆積域分布を示している.図中には大粒径(d=d_{max})、

図-5 粒径別堆積域分布

小粒径の各々について3種のL/d_{max}の結果を示し, 格子の上流側端部を原点として上流方向に座標軸を とっている.全てのL/d_{max}について,格子直上流で 小粒径が少なく,少し上流側で急増したあと上流に 移動するに従って緩やかに減少する分布が見られ る.大粒径については,L/d_{max}=1.5の場合と他の2ケー スとで顕著な相違が見られる.L/d_{max}=1.5の場合に は,格子直上流で大粒径数が最大となり,上流に移 動するに従ってほぼ単調に減少するが,他のケース では,一端上流に向かって漸増し,x/d_{max}=10.0付近 でピークを呈してから,緩やかに減少する.格子に よる土砂捕捉の顕著なL/d_{max}=1.5の場合には,流動 過程でフロント部に集積した大粒径のほとんどが格 子に捕捉されるので,格子直上流に顕著な大粒径の 集積が生じ,この種の相違が見られたと考えられる.

図-6は、格子型ダムによる土砂流ピーク流砂量 の低減率についての水山ら⁴⁾の実験結果と本稿のシ ミュレーション結果を比較したものである.水山ら は、ピーク減少率 P の実験式

 $P = 1 - 0.11 (L/d_{max} - 1)^{0.36} C^{-0.93}$ (10) を提案している (C: 土石流先端の土砂の体積濃度).

図-6 ピーク流砂量低減率

図中の実線は、本稿の計算条件を代入して描いた式 (10)を示している.実験データ自体がばらついてい るが, *L*/*d_{max}の*増大に伴うピークの低減傾向は,シミュ レーション結果にも明瞭である.

(3) 閉塞の物理機構

図-7は, L/d_{max}=1.5の場合の時刻 t=21.0sにおいて, 格子近傍の縦断面・横断面における粒子間接触力を 示している. 個々の粒子は複数の接点で周辺の粒子 と接触し、接点は必ずしも全て断面内にあるとは限 らないので、ここでは、切断面内に存在する粒子の 接触力の平均値を全ての粒子に関して求め、対象領 域の最大値で規格化して表示した.格子部材の中心 軸を切る切断面(縦断面b,横断面c,e)では格子背後 の粒子に顕著な接触力の増大が確認できないが、格 子間の切断面 (断面 a,d) では格子背後の領域に顕著 な接触力の増大が確認できる. このことは、格子部 材に直接的に支持されない地点では粒子間の噛み 合わせによるアーチ構造が形成され. 流軸方向の押 し出しに対抗して閉塞状態が維持されることを示唆 している.縦断面・横断面の何れでも同様の粒子間 作用力の増大が確認できることから、4本の格子部 材を着力点としてドームを形成するような3次元的 アーチ構造の存在が示唆される.

5. おわりに

本研究では、これまで著者らが開発してきた個 別要素法型の移動床シミュレータ(すなわち,数値 移動床)を用いて,格子型の砂防ダムの閉塞過程の 3次元シミュレーションを実施し、砂防ダム閉塞時 の礫堆積域の内部構造に,計算力学的観点からアプ ローチした.シミュレーション結果は、L/d_{max}と閉 塞限界、逆グレーディングの発生、L/d_{max}と閉 塞限界、逆グレーディングの発生、L/d_{max}とピーク 流砂量の関連など、既往の水理実験により確認され てきた事実を良好に再現した.さらに、格子背後の 接触力分布の特性から、3次元的アーチ構造の存在 も示唆された.

今回の解析の対象は、格子との衝突による土砂流

(c)横方向2段目を格子の断面

(d)横方向1段目と2段目の中間の断面

(e)横方向1段目の格子の断面

図-7 格子近傍の粒子間接触力分布

の停止現象に限定して実施したが,格子型砂防ダム の機能を適正に評価するには,堆積後の出水による 侵食・再流出についても予測が必要である.本稿で 主として扱った格子閉塞の問題では,粒子間接触が 現象を強く支配するので,個別要素法が有効に機能 したが,水流と土砂の相互作用が物理機構に大きく 影響する状況では,混相流型のモデルの導入が必須 となる.粒状体モデルと混相流モデルの両者を組み 込んだシミュレーションを本稿の解析領域のスケー ルで実行するには,並列計算の更なる効率化が必要 だろう.

参考文献

- 芦田和男・高橋 保:土石流調節制御に関する研究 京都大学防災研究所年報,第23号,B-2,pp.433-441, 1980.
- 2) 芦田和男・江頭進治:透過性砂防ダムの土砂調 節機構京都大学防災研究所年報,第30号, B-2, pp.441-456, 1987.
- 渡辺正幸・水山高久・上原信司:土石流対策砂防施 設に関する検討新砂防,115号,pp.40-45,1980.
- 水山高久・小橋澄治・水野秀明:格子型ダムのピー ク流砂量減少率に関する研究 新砂防, Vol.47, No.5, pp.8-13, 1995.
- 高橋 保・中川一・里深好文・王 浩民:格子型砂防 ダムの閉塞モデル,京都大学防災研究年報,第43号, B-2, pp. 287-294, 2000.

- 6) 水野秀明・水山高久・南 哲行・倉岡千郎:個別要 素法を用いた鋼管製透過型砂防ダムの土石流捕捉 効果に関するシミュレーション解析,砂防学会誌, Vol.52, No.6, pp.4-11, 2000.
- Cundall, P. A. and Strack, O. D.: A distinct numerical model for granular assembles, *Geothechnique*, Vol. 29, No. 1, pp. 47-65, 1979.
- Gotoh, H. & Sakai, T.: Numerical Simulation of Sheetflow as Granular Material, *Jour. of Waterway, Port, Coastal, and Ocean Engrg.*, ASCE, Vol.123, No.6, pp. 329-336 1997.
- 9) 後藤仁志・五十里洋行・原田英治・酒井哲郎:大規 模土砂流動シミュレーションのための3次元並列型 数値移動床,水工学論文集,第49巻,pp.883-888, 2005.
- 10) 後藤仁志: 数值流砂水理学, 森北出版, p. 223, 2004.
- 11) 後藤仁志・原田英治・酒井哲郎:混合粒径シートフロー漂砂の鉛直分級過程,土木学会論文集,第691号/II-57, pp.133-142, 2001.
- 牛島省・禰津家久:不均一粒子流の混合・分級現象に関する3次元並列数値解析法の提案,水工学論 文集,第45巻,pp.715-720,2001.
- 13) 宮沢直季・谷島 亨・砂田憲吾:格子型砂防ダムの 土石流捕捉過程に関する実験的研究,水工学論文集, 第49巻, pp.901-906, 2005.

(2005.9.30 受付)