衛星利用型光合成モデルによる 日本の水稲の CO₂ 固定量推定 EVALUATION OF CO₂ FIXATION IN JAPANESE PADDY FIELDS BY A PHOTOSYNTHESIS MODEL USING SATELLITE DATA

金子大二郎1

Daijiro KANEKO

¹正会員 工博 松江工業高等専門学校教授 環境・建設工学科 (〒690-8518 島根県松江市西生馬町 14-4)

The Kyoto Protocol aims for a 6% of reduction in CO₂ emission, requiring clean and biomass energy technology instead of fossil fuels. The large paddy fields found in Japan act as a CO₂ fixation and a biomass energy source. These paddy fields are also sources of CH₄, which has 21 times the greenhouse effect of CO₂. The author has developed a monitoring method based on a photosynthesis type of grain production model using meteorological data and the Normalized Difference Vegetation Index NDVI. The present research estimated the amount of fixation by ten paddy fields in Japan. An average value of 3,950 gCO₂/m²/yr was calculated, based on the accumulated seasonal photosynthetic fixation of CO₂. The amount of CO₂ fixation of 31.32 Mt CO₂/yr by paddy fields in whole Japan was estimated from the average harvest index HI=0.45. The division of fixed CO₂ into rice, straw and root portions of plant biomass was evaluated and validated by a carbon weight included in average rice production from 1993 to 2000.

Key Words: Paddy field, CO2, CH4, Model, Photosynthesis

1.はじめに

日本は京都議定書の中で温室効果ガス排出量を 1990 年レベルの排出量 12 億 2900 万トン 00,から 6%削減した 11億5500万トン 00,にすると義務づけられている.この 目標に対して,2003年時点で,13億3600万トン 00,と 排出量が年々増え続けている.現在の対策のままでは排 出量削減の達成が困難な見通しとなっており,国内の森 林による 00,吸収量の増大と,京都メカニズムの排出権 取引の一つである海外植樹による吸収量の組み入れが重 視されている.政府の地球温暖化対策推進大綱の中に示 されている温室効果ガスの数ある削減方法の中で,化石 燃料を使わないサステイナブルなエネルギー供給源とし て新エネルギーが注目されて来た. 従来は廃棄されてい たバイオマスエネルギーの有効利用が,持続的社会の構 築と物質循環の視点から再生可能なエネルギーとして意 義があると認められている.一方,議定書の中で,温暖 化ガスの排出量の削減ばかりでなく 202の吸収源を正確 に推定することが求められている 1).植生については,

森林による CO, 吸収の研究が進められている. 水稲の CO, 吸収源の視点から見た 00,固定量に関する研究は,農地 の1年を通して光合成された CO2 が再び大気に戻るため 長期に吸収・蓄積されないと考えられており,主として メタン (CH₄) についてである^{2),3)}. 従来, 平地部の土地 利用に占める広大な水田は,穀物生産と水田の生態や水 文循環における貯留効果あるいは気温緩和効果等の多面 的機能が研究されて来た.本研究は,水田について炭素 循環の視点から水稲を巡る過程の解明と温室効果ガスの 第二の影響要因である CH』の発生の元となる水稲の植物 体への炭素配分や,水稲の収穫後の残滓となる稲ワラの バイオマスについて,エネルギー資源としての活用によ る CO2 の削減の効果に注目する. 稲ワラは平地で収穫時 に刈り取られており,森林バイオマスの伐採・運搬と異 なって資源利用が比較的容易である.ここで,水田にす き込まれた稲ワラは,メタンガスの放出源であることに 注意せねばならない.温室効果ガスの中で CH4 の効果は 約20%を占め CO₂の次に削減対象として重視されている. アジアを中心とした水田は,メタンガスを放出させてい

							Unit: $Mt = 10^6 t$
items	refference	emis	ssion	F	orest	City Affores.	Paddy field
	1990	1999	2003	2000	2010	2010	Photosynthesis.
Ab. Or Emiss.	emission	emission	emission	absorption	planed	absorption	fixation
Unit	Mt CO ₂			Mt CO ₂		Mt CO ₂	Mt CO ₂
1st goal(-6%) 1155	1235	1314	1339	35.5	47.7	0.28	31.3
reduction(Mt) & %	80	159	184	19%	26%	0.15%	17%

る^{4),5)}. メタンの排出源となる稲ワラをバイオマス利用 することは,地球温暖化係数 GWP (Global Warming Potential)が21,すなわち CO₂の21 倍の温暖化効果を持 つ CH₄の放出を除去する効果を持っている.なお,バイ オマスエネルギーとして利用の容易なサトウキビやトウ モロコシの糖類や澱粉については,発酵によるエタノー ル製造とガソリン代替エネルギー利用がブラジルや米国 で進められている.バイオマスエネルギーは大気中にあ ったニュ-トラル CO₂であって,燃焼させても CO₂の放出 とならない長所を持っている.

著者は,アジアにおける水資源制約の視点から,光 合成型の穀物生産量を監視するための穀物生産指標を開 発してきた^{6),7),8)}.この際,穀物が稔実するメカニズムの モデル化の基礎として,全天日射量を含む気象条件から 作物の光合成速度の推定を進めてきた.この光合成速度 は,1日当たりの単位面積当たり 002固定重量によって表 わされている.これまでに利根川下流域の埼玉県久喜市 の水田について,単位面積当たりの固定速度を計算し, 日本の水田について02固定量とCH4放出の評価を試みて 来た⁹⁾.本研究はCO2に対象を絞り,細部を補って日本の 水田による固定量を検討した.

表-1に,前記の推進大綱に示されている植生関連の 温暖化対策を整理した 2003年時点で1990年の1,235 Mt CO₂の6%削減の目標である1,155Mt CO₂に対して184 Mt CO₂を削減せねばならない.その対策として森林の吸収量 によって47.7Mt CO₂へ増大させる計画になっている.こ のほか,都市のヒートアイランド対策として緑化の対策 が計画されており,その吸収量は0.28Mt CO₂とわずかで ある.表-1中に,本研究で推定された水稲の光合成によ る固定量は31.3Mt CO₂/yr であることを示した.この推 定された根拠を以下に記述すると共に,日本の温暖化対 策推進大綱の中での意義を以下に報告する.

2.光合成速度による CO2 固定量の評価方法

本研究の CO₂固定量の推定方法は,Rasmussen¹⁰による 衛星を利用した純一次生産量 NPP(Net Primary Production)の推定式を拡張した光合成型モデルである 光合成 速度 PSN(Photosynthesis)の式形は,日射・気温,出穂 期における温度障害,作物の茂りの程度を表す植生現存 量,そして,水ストレスによる気孔開度等の要因を取り 入れている^{7),8)}.

図-1 2000 年 7 月 31~8 月 9 日の期間における日本の植 生指標 NDVI (MVC)分布

$$PSN = \frac{a \cdot APAR}{b + APAR} \cdot f_{Syn} (T_c) \cdot \beta_s \cdot eLAI$$
(1)

 ここに PSN :光合成速度(mgCO₂/m²/day), APAR:吸 収光合成有効放射(Absorbed photosynthetically active radiation, MJ/m²/day), f_{3n}:温度影響関数, s: 気孔開度, a, b:Michaelis-Menten 定数, T_c: 葉温 (), eLAI: 有効葉面積指数(effective Leaf Area Index)

従って, ーシーズン当たりの O_2 固定量 F_{CO2} (mgCO₂/m²) は, 穀物への温度障害影響関数を組み入れた光合成速度 を播種 t_s から収穫 t_h までの期間について積分した次式に より定義する.

$$F_{CO_2} = \int_{t_s}^{t_h} PSN \cdot dt \tag{2}$$

バイオマスエネルギーの視点からは、食糧としての穀物 生産量を除く必要がある、本研究の積算型の光合成型穀物生産指標 CPI (Crop Production Index, mgCO₂/m²)は、

$$CPI = F_{Ster} (T_c) \int_{t_s}^{t_h} PSN \cdot dt$$
 (3)

ここに,不稔関数 F_{Ster}は,次式で表す.

$$F_{Ster} = \int_{t_{hd}}^{t_r} f_{Ster}(T_c) \cdot dt / (t_r - t_h)$$
(4)

ここに, t_s: 播種の時期, t_{hd}: 出穂の始まる時期,

t,:登熟の終わる時期、t。:収穫の時期,

温度影響関数f_{Ser}は,低温不稔・登熟遅延型冷害につい ては村田(1964) や Vong and Murata(1977) を,高温障害 については森田(2000)の関係図を参考にして定義した. 不稔の温度影響関数 f_{Ster}の細部については金子^{7,9)}を参照され たい.水田による炭酸ガス固定量は,CO2の単位面積当たり吸 収フラックスに作付面積を掛けることによって求めることがで き,次式で表わした.

$$S_{CO_{\gamma}} = F_{CO_{\gamma}} \cdot A_{paddy}$$
(5)

: 光合成による炭酸ガス固定(mqCO₂), ZZE, S_{m}

F₀₀₂ : CO₂ の単位面積当たり固量 (mgCO₂/m²), A_{paddy}:水稲の作付面積(m²)

水利用とストレスを取り入れた穀物生産量推定のた めのEPIC(Erosion Productivity Impact Calculator)シ ミュレーションモデル¹¹⁾は,有効積算気温 GDD(Growing Degree Day)を標準化した Heat Unit (HU)を用いて作物の 葉面積指数を表し,地上作物バイオマスB_{AG}に,収穫指数 HI を掛けた割合が穀物生産量となるとしている .水稲の 収穫指数 HIは,品種により0.4 から多収量品種の0.5 に 分布し、平均的には0.45の値を持っている¹²⁾本研究は, この収穫指数HIを用いて水稲の植物体に占めるCO,の固 定配分量を計算し,米穀と根系を除いた地上のバイオマ ス利用と CO, 削減量を推定した . CH4 の放出削減の評価 には,根系が発生源として更に加わる.

3. 使用データ

水稲の CO2 固定速度である光合成速度 PSN の計算に使 用した気象データは AMeDAS (Automated Meteorological Data Acquisition System)による気温と気象台・測候所 による全天日射量である.衛星データは, NOAAの AVHRR (Advanced Very High Resolution Radiometer)による 10 日間の植生指標 NDVI について, Tateishi¹³⁾が MVC(Max Value Composite)化法によって雲の影響を除 いて作成したデータである.図-1に2000年7月31~8 月9日の期間における日本の植生指標 NDVI (MVC)の 平面分布を示した.穀物生産指標のモデリングを検証す る地点は,利根川中流域の久喜と北上川下流の仙台平野 にある古川地点である 水稲収量に関する作況データは, 1993年の凶作を含む2000年までの8年間について,農 林水産省農林統計情報部から提供を受けた.

4.標準化された植生指標 NDVIu

植生の生育量を表す植生指標 NDVI は セルロースの形 となっている炭素や 00,固定量の指標でもあると考えら れる.この植生指標は,同じ水田という土地被覆であっ ても 地点が異なるとNDVI の値に季節的な相違が認めら れる.衛星の可視・赤外センサーである AVHRR の測定画

光合成速度 PSN による CO2 固定量の季節変化 図-3

素内に水田が占める作付面積率(植被率)や生育量・品 種が関係していると考えられる このNDVI の地域的相違 が植生のバイオマスの変数として光合成速度 PSN を変え て 日射よりも大きな影響を穀物生産指標 CPI に及ぼす. このため、作付面積等の相違による NDVI の変化を除くた め,作況が平年作である基準の植生指標値として全対象 年数について平均値 NDVI Hom を求めた.植生指標 NDVI を この平均収穫量時積算植生指標 NDVI Hom で割った植生指 標Unit(NDVI/NDIVI_{Hmm})を穀物生産指標CPIの計算に用 いて,生育量以外の要因を排除した.標準化されたNDVI Unit について季節変化を図-2 に示した 月ごとの気象を 反映して 00,固定量やバイオマスを表す指標としての NDVI Unit が変動している.この変動は,平年作の NDVI が気象条件の良し悪しによって変化した割合のみを表わ

図-4 単位面積当たりの炭酸ガス固定量 (CO₂換算 光合成量)の季節積算値

している.このNDVI Unit により,任意の地点に光合成 速度 PSN や穀物生産指標 CPI モデルを適用可能となる.

5.光合成速度と積算 002 固定量

CO2 固定速度である光合成速度 PSN に及ぼす日射と気 温の影響については多くの研究があり,他の要因に比べ て精度よく影響を関数化することができる.宮城県古川 地点の水田について,日々の光合成速度による CO2 固定 量を図-3 に示した.天候による日射量の変化に依存して, 光合成速度は大きく変動している.図中に凶作となった 1993年の低い00,固定速度と大豊作であった1994年の大 きな固定速度を示した.図-4に各年の単位面積当たりの 積算光合成速度 iPSN すなわち積算 CO2 固定量の季節変化 を 宮城県古川地点と埼玉県久喜の水田について示した. 光合成速度を積算することにより,天候による 00,の固 定量の差が明瞭となっている.低温と日照不足によって 著しい不作となった 1993 年の季節変化を太線で示した. この1993年のCO2固定量である積算光合成速度 iPSNが, 図の中で最も低い小さな値となっていることが分かる. 両地点におけるこの傾向が,水稲が凶作であったことと

図-5 穀物生産指標 CPI と作況指数との関係

一致している また 大豊作であった 1994 年については, 積算 CO₂ 固定速度が大きく,図中で最も上部の太線で示 されてあり,豊作の傾向を良く表している.作況指数 CSI と穀物生産指標 CPI との関係を図-5 に示し,本モデルの 良い適用性を裏付けた.

積算 002固定量の年ごとの変動は , 久喜地点について みると年平均値である 3950 gCO₂/m²/yr に対し凶作であ った 1993 年の 3208 gCO₂/m²/yr から 1997 年の 4613 gCO₂/ m²/yr と - 18%から+17%の変動をしている.また,古川地 点では,年平均値が 3605 gCO₂/m²/yr であり,久喜地点 よりも大きい.積算 CO2 固定量の年平均値は,同一の積 算期間であるならば西日本の地点ほど日射量の増大によ って大きくなっていた. 例えば, 濃尾平野の岐阜県八開 では 4244gC0,/m²/yr であった. なお, 日射量が大きけれ ば豊作になる一方で,登熟が進むことにより収穫が早ま り,00,固定量は一定に近づくと考えられる.また,西日 本については、衛星利用に適した広大な水田地帯が少な いことと,麦作による2毛作と野菜畑が水田利用に混入 していたため,主として東日本を対象とした,その後に 日本全国の水田面積を掛けて推定することとした.その 結果、日本の中央に当たる久喜地点における年平均の 00, 固定量を採用し,水田の持つ CO2 固定の機能は,単位面 積当たり 3950 gCO₂/m²/yr と見積もった.

6.水田の CO2 固定量と CH4 放出源

本研究による埼玉県久喜の AMeDAS データを用いた光 合成速度の積算値は,一毛作の水田による単位面積当た りの 002 固定量である.この光合成速度は,呼吸による 002 の放出を内含した純光合成速度である.一毛作の期間 についての光合成量である 002 固定量は,穀物の炭水化 物と地上のバイオマスとしてのセルロースのほかに,根 系にも有機物として蓄積されている.この水田の 002 固 定量から,水稲の植物体に配分される割合によってバイ オマスエネルギーの利用と CH4 放出を削減する対策の意 義を検討する.バイオマスの場合,収穫された穀物生産 量に相当する 002 固定量と根系のセルロースとを積算 002 固定量から差し引き,稲ワラ部のみを取り出さねばなら

	表-2	水稲の炭素循環としてのCO	。固定量と植物体構成部を	への配分
--	-----	---------------	--------------	------

								Unit: $Mt = 10^{\circ}t$			
	Present research by photosynthesis model								Rough rice production		
	Photosyn.	Photosyn.	Harvest	Paddy	Above ground	Rough rice	Paddy straw	Root	Production	Carbon	CO ₂
Region	rate	fixation	Index	fixation	Biomass	Biomass	Biomass	Biomass	Dry weight	Weight	Weight
	$g CO_2/m^2$	Mt CO ₂	-	Mt C	Mt CO ₂	Mt CO ₂	Mt CO ₂	Mt CO ₂	Mt	Mt C	Mt CO ₂
Saitama	3950	1.47	0.45	0.401	1.11	0.500	0.611	0.359	-	-	-
Japan	3950	31.32	0.45	8.541	23.68	10.66	13.02	7.64	9.80	3.127	33.11

表-3 地球温暖化推進大綱における CO2 削減目標に対する水稲のバイオマス利用の意義

Unit: $Mt = 10^6 t$ Estimation of CO₂ fixation by paddy Items Refference Emitted 1990 1999 2003 Photosynthesis Paddy Above ground Paddy straw Root Ab. Or Emiss. fixation emission emission emission fixation biomass biomass biomass Mt CO₂ Unit Mt CO₂ Mt C Mt CO₂ Mt CO₂ Mt CO₂ 1st goal (-6%) 1155 1235 1314 1339 31.3 3.55 23.7 13 7.64 reduction(Mt) & % 80 159 184 13% 17% 7% 4%

ない.また,メタンの場合には,水田にすき込まれる稲 ワラと地中に残る根系の CO2 固定量が放出源となる.従 って 稲の地上部のバイオマスと米の収量としての澱粉, そして根部のバイオマスの三要素を検討する必要がある. 本研究では,関東の水田について光合成速度を収穫期間 まで積算した単位面積当たりの固定量 3,950 gCO₂/m²/yr と,水稲の作付面積である 37,300 ha から埼玉県の炭酸 ガスの全固定量は 147 万 tCO /yr と推定した . なお , 稲 の茎のセルロースも澱粉も同一の化学式(CaHaOa)。である ので、00,や炭素の固定量の換算は容易である.水稲収量 として収穫されるバイオマスの部分は,農学分野で収穫 指数 (Harvest Index, HI)を使って分離することができ る.水稲の場合には平均的に HI Ave=0.45 であることから 12),水稲収量を除いたバイオマスとしての 00,固定量は 81万t CO,と計算される.このバイオマスの中で炭素物 質循環の視点からは, 稲ワラと根部に分子量の構成比に 相当する 40.1 万 t C/yr の炭素が残り, メタン醗酵の微 生物群による CH₄の排出の源となる. 稲ワラは,牛舎や 屋根等の他用途に利用される部分が多かったが,近年は 裁断して水田にすき込まれる部分が多い.

埼玉県の水稲について作付面積の経年変化と 002 固 定量(積算光合成速度)の年変化および平均年 002 固定 量を表-3 に整理して示した.水稲の単位面積当たり年平 均 002 固定量は,3950 gC02/m²/yr であった.この固定量 と水稲作付面積から埼玉県の 002 固定量は,147 万 tC02/yr と推定された.更に,稲の植物体構成の各部へ の炭素配分に注目しながら日本全体の水稲による 002 固 定量を推定し,表-2 に整理した.推定の手順は以下のと おりである.本研究による単位面積あたり 002 固定量に 水稲の全国作付面積 1.763×10¹⁰m²をかけることにより, 日本全国の水稲による 002 固定量は3132 万 t 002/yr と略 算することができる. Huang¹⁴⁾によれば平均的な稲の地 上・地下バイオマスは,70 日目の条件について 1591g/m² と 514g/m²である.従って,生育ステージによる変動を 無視して近似すれば,地上バイオマスは全体の 75.6%, 地下部は 24.4%である¹⁴⁾.本研究の CO₂固定量 3132 万 t の 75.6%から得られる地上の水稲バイオマスによる固定 量は 2368 万 tCO₂/yr なる.この地上部バイオマスの内, 収穫指数 HI=0.45 に相当する籾米の割合 1066 万 tCO₂を 除いた部分が,稲ワラ部の CO₂ 固定量であり,1302 万 tCO₂/yr となる.3132 万 t の 24.4%に当たる 764 万 t CO₂/yr が根系となる.これらの植物体配分の割合と CH₄ ガス放出のための炭素固定量を表-2 に示した.

日本全体の水田は3132万 t002/yr の炭酸ガスを固定し ていることが分かったが,一方で,根として残された764 万 t 002の地下バイオマスは CH4の排出源となる.さらに 水田に稲ワラをすきこむと最大1302万 t002の炭酸ガス すなわち355.4万 t C の炭素が地中に残り, CH4の排出源 に加わることになる.

日本全国の水稲収量の統計データを使って, 籾米に含 まれる炭素の視点から,水田による CO2 固定量 3132 万 tCO₂/yr を以下に検証する .1993 年より 2000 年までの年 平均水稲収量は農林水産省のデータにより9.80 Mt であ る.米の炭水化物重量は,一般に乾燥重量の71.8% 15)で あり 7.036 Mt である.炭水化物は前記のように化学式 (C.H.O.)。であるから,重量に占める炭素Cは72/162= 0.4444の割合である.従って,収穫された籾米に含まれ る炭素Cは3.127MtCとなる水稲の地上部バイオマスは, 収穫指数HI=0.45と籾米の3.127MtCから6.949 MtCの炭 素 C を含むと計算される .一方 , CO2 に占める炭素の割合 は原子量から 12/44=0.2727 であるので 推定された水田 の固定量 31.32 MtCO2の 27.27% である 8.541 MtC の炭素 Cを固定している.この8.541 MtCの24.4%である2.08 MtC が根系に含まれる炭素の固定量である.この値と水 稲収量から得られた 6.949 MtC の和が稲全体に含まれる 炭素量である.すると,光合成速度による推定値 8.541

MtC に対して水稲収量統計値から換算した 9.029 MtC に 対して 94.6%の推定精度と評価される .CO₂換算で表示す れば,水稲収量からの固定量は 9.029 × (44/12)=33.11 MtC と推定され,本研究の光合成モデルによる推定値 31.32 MtCO₂/yr の精度の妥当性を検証できた.誤差とし て考えられるのは,全国の水田の平均的な光合成速度が 最も不確定であり,且つ変動していることが最大の要因 と考えられる.

水田からの稲ワラをバイオマス利用した場合,我が国の温暖化対策推進大綱に占める意義を表-3に整理した.水田は31.3MtのOQ2を固定し,炭素循環の視点からは,3.55 Mtの炭素Cを固定する.この内,根を除いた地上のバイオマスは,23.7 Mt CO2であり,籾米を除いた稲ワラのバイオマスは,13 Mt CO2と推定された.日本のOQ2削減目標に占める割合は7%である.この他に地球温暖化係数GWPの大きいCH4の削減効果があるが,別の機会に発表したい.また,稲ワラバイオマスのエタノール利用が最も可能性の高い利用の具体策であるので,最近の自動車燃料へのメタノール混入によって,化石エネルギー利用の削減と、エネルギーの多角化を図る効果があろう.

7.おわりに

著者は,水田について衛星データを用いた光合成速度 と穀物生産量の推定についてモデル化を進めてきた.こ の方法の基本は衛星による植生指標 NDVI と気象データ を用いた光合成速度のモデル化であり 光合成速度は CO, の固定速度である.本研究は炭素循環とバイオマスエネ ルギーの視点から,水稲による CO2の固定速度を播種か ら収穫期まで積分した単位面積当たりの固定量を 3,950gCO₂/m²/yr と評価した.次に,作付面積を使って日 本全体の水田は 3132 万 t CO₂/yr の炭酸ガスを固定して いると評価した、日本全国の水稲収量と収穫指数から計 算し地上の水稲バイオマスによる固定量は2368万tCO2, 稲ワラのバイオマスによる固定を1302万 tCO₂/yr と推定 した.また,根として残された764万tCO2の地下バイオ マスは CH₄の放出源となる.これらの推定値について, 水稲収量の重量データを炭素 C 量に換算し,本モデルに よる炭素固定量と比較し,約95%の一致をみて推定値の 妥当性が検証された.

謝辞: 本研究に用いた NOAA AVHRR の NDVI データは,千葉 大学環境リモートセンシングセンターの建石隆太郎教授より提 供を受けた.記して謝意を表わします。

参考文献

- 1) 環境省地球環境局:地球温暖化対策推進大綱, pp72, 2002.
- Kimura, M. : Sources of methane emitted from paddy fields, Nutrient Cycling in Agroecosystems, 49, 153-161, 1997.
- 3) Liou, R., Juang, S., Lin, C., and Chen S. : Methane emission from

fields with three various rice straw treatments in Taiwan paddy soils, Journal of Environmental Science and Healthy, Part B, Pesticides, Food Contaminants, and Agricultural Wastes, B38, 511-527, 2003.

- 4) Mori, Y.: Progress in biomass energy studies in the Ministry of Agriculture, Forestry, and fisheries of Japan, Rice Science: Innovations and impact for livelihood, Edited from Proceedings of the International Rice Research Conference, 16-19 September 2002, Beijing, China, pp. 751-759, 2004.
- 5) Nakagawa, H.: Producing biomethanol and reducing CO₂ emissions from straw and husk by –products of rice, Rice Science: Innovations and impact for livelihood, Edited from Proceedings of the International Rice Research Conference, 16-19 September 2002, Beijing, China, pp. 759-767, 2004.
- 6) 金子大二郎・大西政夫:水資源制約時代における中国・イン ドの穀物生産量モニタリングの提案,土木学会環境システム 論文集, Vol.31,235-244,2003.
- 7) Kaneko, D., Ohnishi, M., Ishiyama T., and Tateishi, R. : Modeling of a photosynthetic crop production index for early warning using NDVI and Meteorological data, Proceedings of SPIE, Remote Sensing for Agriculture, Ecosystems, and Hydrology , 11th SPIE International Symposium on Remote Sensing, 1-10, Gran Canaria, Spain., 2004.
- 8) Kaneko, D., Ohnishi, M., Ishiyama T., and Tateishi, R.: Proposal of a photosynthesis type of crop yield index for monitoring crop production in China and India in the era of water resource restriction, 4th International Crop Science Congress, 4p, Brisbane, Australia., 2004.
- 9) 金子大二郎: NDVI を用いた光合成モデルによる水稲の CO₂ 固定量と CH₄ 放出の検討, 土木学会,第 32 回環境システム研 究論文発表会講演集, 133-139, 2004.
- Williams, J. R., Jones, C. A., Kiniry, J. R., and Spanel, D. A.: The EPIC Crop Growth Model, TRANSACTION of ASAE, Vol.32 (2), 497-511, 1989.
- Rasmussen, M. S.: Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information: Part II. Crop yield assessment, International Journal of Remote Sensing, Vol.19 (1), 119-137, 1998.
- Tateishi, R. : Twenty-year global 4-minute AVHRR NDVI dataset, CEReS, Chiba University, CD-ROM., 2001
- 13) 崔楠谷他:水稲における収穫指数の品種間差に関する研究-乾物生産特性との関係-,日本作物学会紀事, Vol.69, No.3, pp.351-358, 2000.
- 14) Huang, Y., Sass, R. L., and Fisher, F. M. : Methane emission from Texas rice paddy soils. 2. Seasonal contribution of rice biomass production to CH₄ emission, Global Change Biology, 3, 491-500, 1997.
- 15) 竹生信治郎監修,石谷孝佑・大坪研一編:米の科学,シリ ーズ食品の科学,朝倉書店,米の化学成分,pp199,1996.