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A pseudo validation algorithm, which is capable of identifying the prediction uncertainty through 

recognizing and quantifying the different uncertainty sources in a hydrologic model, is manipulated as an 
instrument for hydrological model reliability assessment.  For implementation, the pseudo validation 
algorithm is manipulated in order to compare TOPMODEL with different vertical flux calculation 
components, which have been applied to two Japanese basins.  An index, which originates from the 
Nash-Sutcliffe efficiency, named Model Structure Indicating Index (MSII), is used to quantify the model 
reliability under different magnitudes of input uncertainty.  The results show that within a small 
magnitude of input uncertainty, the reliability of a five parameter TOPMODEL is worse than a six 
parameter TOPMODEL.  However, within larger magnitudes of the input uncertainty, the reliability of 
the five parameter TOPMODEL is better than that of the six parameter TOPMODEL, this shows that the 
pseudo validation algorithm can be used as a reference for hydrological modeling. 
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1. INTRODUCTION 
 

Commonly, validation is defined as the 
estimation of the confidence in the ability of any 
prediction model to perform with a certain 
qualitative outcome for its intended purpose.  In 
hydrologic science, the term is often used to 
indicate a thorough model testing.  It is a 
time-consuming process that requires a massive 
amount of data.  Similar to the model calibration 
process, the quality/representativeness of the data 
used for model validation is extremely essential.  
However, in most cases, the accuracy of the input 
data is actually unknown.  As a consequent of this, 
all hydrologic models are being calibrated, 
validated and manipulated under an unknown 
magnitude of input uncertainty.  The reason why 
these models are still capable of regenerating a 
realistic and valid watershed response data series is 
due to the models’ calibration processes.  This fact 
has seldom been explicitly discussed. 

  The capability of a hydrologic model to 
regenerate a realistic and valid watershed response 
series under a certain level of data input uncertainty 
is highly related to the model structure. By 
acknowledging that input data (in this study, rainfall 
data) errors propagate and persist in hydrologic 
models, and corrupt the parameter estimation 

processes, a pseudo validation process can be 
performed by using limited observation data to 
assess the adaptability and reliability of a 
hydrologic model.  Instead of acquiring massive 
amounts of observation data, the pseudo validation 
algorithm validates the model through observing the 
model behavior under different magnitudes of the 
input uncertainty1). In this paper, the logic behind 
the algorithm is thoroughly discussed; then the 
validity of the algorithm is verified by 
demonstrating the comparisons of two 
TOPMODELs with different vertical flux structure. 
Moreover, it is shown that this method is used to 
access not only the validity of the model structure, 
but also the reliability of input data. 

The basic idea of the algorithm is: if a model is 
capable to regenerate a realistic and valid watershed 
response series in the future under unknown 
magnitude of input uncertainty, it must capable to 
compensate the error contaminated data under 
certain level of input uncertainty by using the 
existed record data.  To do this, first, the Monte 
Carlo simulation method is applied to add bias 
items into the model input data series (rainfall), and 
then the rainfall realizations, parameter space, and 
the model outcomes (outflow discharge) under 
different bias levels are acquired.  Secondly, by 
examining the counter relationship between the 

Annual Journal of Hydraulic Engineering, JSCE, Vol.50, 2006, February 



 

 

model simulation outcomes, the calibration 
outcomes and the observed watershed response 
series (discharge), an uncertainty structure can be 
recognized.  Finally, through this process, the 
parameter uncertainty, calibration uncertainty, and 
the model structure uncertainty, created by the input 
data uncertainty are recognized, separated, and 
quantified.   

By applying this pseudo validation process, 
TOPMODELs with different vertical flux 
calculation components are compared by applying it 
to two Japanese watersheds. 

The Nash-Sutcliffe effeciency2) and an index 
which originated from the Nash-Sutcliffe efficiency 
named the Model Structure Indicating Index 
(MSII)1), is used to quantify and assess the 
reliability of the candidate models, with a larger 
value of MSII indicating a hydrologic model with a 
poorer structure. The results show that within a 
small magnitude of input uncertainty, the reliability 
of a five parameter TOPMODEL is worse than a six 
parameter TOPMODEL. However, within a larger 
magnitude of input uncertainty, the reliability of a 
five parameter TOPMODEL is better than a six 
parameter TOPMODEL.  This indicates that the 
pseudo validation algorithm can be used as an 
efficient instrument for water resources 
management in the areas of hydrological modeling 
and for rainfall  runoff simulations of poorly 
recorded or ungauged basins.   

 
2. DESCRIPTION OF THE ALGORITHM 

AND THE LOGIC BEHIND THE 
PROCESS 

 
The straightest way to think about a pseudo 

validation algorithm is that: if a model is capable of 
predicting the future conditions of a particular type 
of catchment under a certain level of input error, it 
must be capable of predicting the current conditions 
as well, under a certain level of input error. 

The algorithm1) is used to test the stability of the 
predictive capability possessed by a hydrologic 
model under a certain magnitude of input 
uncertainty.  The idea can be clarified by referring 
to the simplified modeling procedure depicted in 
Fig.1, which is modified according to Sargent3). 

In Fig.1 the problem entity is the system to be 
modeled; the conceptual model is the mathematical 
representation of the problem entity developed for a 
particular study; the computerized model is the 
conceptual model implemented on a computer.  
The conceptual model is developed through an 
analysis and modeling phase; the computerized 
model is developed through a computer 
programming and implementation phase, and 

 
Fig.1 Algorithm for uncertainty recognition and quantification. 

 

 
Fig.2 Diagram of uncertainty recognition and quantification. 

 
inferences about the problem entity are obtained by 
conducting computer experiments on the 
computerized model in the experimentation phase. 
Conceptual model validity is the determination of 
whether or not the theories and assumptions 
underlying the conceptual model are correct and that 
the model representation of the problem entity is 
“reasonable” for the intended purpose of the model.  

Computerized model verification ensures that 
the computer programming and implementation of 
the conceptual model is correct.   This is often 
referred to as the model calibration process.  
Operational validity is the determination that the 
model’s output behavior has sufficient accuracy for 
the model’s intended purpose over the domain of the 
model’s intended applicability.  In most cases, this 
is the model validation process.  Data validity 
ensures that the data necessary for model building, 
model evaluation and testing, and conducting the 
model experiments to solve the problem are 
adequate and correct3).  However, the preciseness 
is an unknown. 

Conventionally, these models require massive 
amounts of data for the validation process, which 
makes model validation an intricate mission to 
perform.  Input data uncertainty makes data 
validity, which is located in the core position of the 
modeling scheme, difficult to perform.  Since there 
is no way to assure the accuracy of the data used for 



 

 

model calibration and validation, the subsequent 
result is that the best calibrated parameter set may or 
may not equal to the “effective value”, which will 
make a hydrologic model works properly. A feasible 
alternative to this is to recognize that within certain 
levels of input uncertainty, there is a possibility that 
a hydrologic model would still be capable to 
regenerate true watershed characteristics.  In this 
sense, both the model calibration process and error 
propagation scheme induced by the model structure 
must be taken into consideration. 

Fig.2 depicts the schematic diagram of the 
pseudo validation algorithm manipulated in this 
study4).  The bias items, which are located at the 
center of the structure, dominate the whole 
uncertainty propagation scheme.  If the focus is 
only on the changing of the bias items and its impact 
on the model outcome, which is referred to as the 
entire uncertainty (EU) in this study, it can be seen 
as a sensitivity analysis of the input data error.  By 
using the system uncertainty (SU), indicated by the 
predictive capability of the model under input 
uncertainty, the distance between system uncertainty 
and entire uncertainty indicates the 
effectiveness/goodness of the representativeness of 
the calibrated parameter sets, which can be referred 
to as a measure of model divergence5).  Inherent 
uncertainty (IU) represents the variability of the 
parameter sets generated from specified input 
uncertainty levels.  The distance between inherent 
uncertainty and entire uncertainty indicates the 
capability of model to adapt itself to the specified 
input uncertainty, which is dominated by the model 
structure. The quantified and categorized 
uncertainty: system uncertainty, entire uncertainty 
and inherent uncertainty are integrated into MSII, 
which enables it to evaluate the goodness of the 
model structure through observing its behavior 
under certain magnitudes of input uncertainty.  
(Detailed algorithm for the recognition, separation 
and the relationship between the categorized 
uncertainties is described in Chiang et al., 2005. 1) ) 

Fig.3 depicts a schematic diagram of the 
uncertainty structures. In Fig.3, Qo denotes observed 
discharge; Qb denotes a model outcome with the 
best-fitted parameter set and Qe: denotes a model 
outcome with a parameter set within the whole 
parameter space. SUε , EUε  and IUε  represent 
the difference of hydrographs amongst the observed 
data, estimated with a parameter set in the parameter 
space, and estimated with the best fitted parameter 
set.  The system uncertainty, entire uncertainty and 
inherent uncertainty are evaluated by using SUε , 

EUε  and IUε  with Nash-Sutcliffe efficiency. The 
quantified and categorized uncertainties: system  

 
Fig.3 Schematic diagram of the uncertainty 
structures. 
 
uncertainty, entire uncertainty and inherent 
uncertainty are integrated into MSII, which enables 
it to evaluate the goodness of the model structure 
through observing its behavior under certain 
magnitudes of the input uncertainty. Model 
Structure Indicating Index (MSII)1) is defined as: 
 

SU
EUIUMSII −

=                     (1) 

The difference between the entire and the 
inherent uncertainty is used as the numerator in the 
Eq.(1), while the system uncertainty is used as the 
denominator.  The numerator is expected to be a 
smaller value if the model is considered to have a 
better chance of reproducing a realistic watershed 
response series.  It is a measure of the possibility 
of a model to adapt itself to the input uncertainty.  
The larger the magnitude the less likely the model 
will be able to adapt itself to the error contaminated 
input data, which indicates the inability of the 
calibrated parameter space to drive the model to 
reproduce a realistic watershed response due to the 
insufficient structure of the hydrologic model.   

The numerator shows a measure of the ability of 
a hydrologic model to adapt to the uncertainty 
contained input data.  The numerator in itself is not 
enough to reveal the model structure, a component 
showing the model predictive capability is needed.  
The denominator of MSII indicates the 
effectiveness/goodness of the model calibration 
results and the predictive capability of the model, 
which therefore, enables it to reflect the calibration 
scheme explicitly.  The index interprets the 
variance caused by the calibration process and 
model structure in a dimensionless form through the 
Nash-Sutcliffe efficiency.  During the 
implementation of the model evaluation, the system 
uncertainties less than zero are excluded from the 
calculation of MSII due to its insignificance.  
Hence the smaller value of the MSII represents 
better model structure. The range of MSII is: 

∞<≤ MSII0 . 



 

 

3. MODEL DESCRIPTION 
 

In order to perform a pseudo validation process, 
TOPMODEL is used in this study.  TOPMODEL 
is almost 30 years old and has been the subject of 
numerous applications to wide variety of catchments.  
The code used herein is a modification version 
based on the TOPMODEL 95.02 acquired from the 
official website of TOPMODEL 
(http://www.es.lancs.ac.uk/hfdg/topmodel.html).  
TOPMODEL is a set of programs for rainfall-runoff 
modeling in single or multiple subcatchment in a 
semi-distributed way and using girded elevation 
data for the catchment area.  It is considered to be a 
physically based model as its parameters can be, 
theoretically measured in situ6)7). Subcatchment 
discharge is routed to the catchment outlet by using 
a time-area diagram with a constant velocity 
throughout the catchment area, which is a parameter 
that needs to be calibrated. The infiltration excess 
mechanism and evapotransportation mechanism is 
not included in this study.   

In TOPMODEL, there are several parameters 
that need to be calibrated before model validation 
and implementation.  Basically they are: m, the 
decay factor which is the controlling rate of decline 
transmissivity with increasing storage deficit; 0T , 
the hydraulic transmissivity; td : the time delay 
constant for vertical flux calculation; RV: the 
overland flow velocity.  0Q , the initial base flow 
and Sr0, the initial root zone storage deficit, which 
are specified at the start of simulation.  

Inside TOPMODEL, the vertical drainage vq  
from unsaturated zone storage at any point of 
topographic index class i is calculated either by 
Eq.(2): 

 

di
v tS

Suzq
i
=                           (2) 

 
where Suz is the storage in the unsaturated zone, td is 
a time delay constant and iS is a local storage 
deficit; or by Eq.(3)8): 

 
mS

v
i

i
eKq /

0
−= α                      (3) 

 
where α  is the effective vertical hydraulic 
gradient, K0 is the saturated conductivity at the 
surface, and m is a model parameter controlling the 
rate of decline of transmissivity with increasing 
storage deficit.  If the value of α  is set to unity, 
thus assuming that the vertical flux is equal to the 
saturated hydraulic conductivity just at the water 

table, it is eliminated as a parameter8).  Eq.(2) is the 
equation of a linear store with a time constant ditS  
that increases with increasing depth to the water 
table7).  In the model, the K0 is acquired by 0T , 
that means the number of the parameter are five (m, 

0T , 0Q , RV and Sr0)or six (m, 0T , td, 0Q , RV and 
Sr0).  The two TOPMODEL which use the 
different vertical flux computing components are 
applied for the performance of model quantitative 
comparison.  

 
4.  DATA DESCRIPTION 
 

Two Japanese watersheds are used for the 
pseudo validation of the two TOPMODEL: Yasu 
River basin (387 km2) and Kamishiba basin (211 
km2).  The DEM data and the rainfall data used in 
the study are described as below: 

 
(1) DEM data 

For TOPMODEL, two data sets are needed 
before the simulation, the histogram of topographic 
index and the time-distance diagram, which are both 
acquired through DEMs in this study.  50m 
resolution raster DEM data is used for data 
extraction.  The DEM algorithm manipulated in 
this study for preliminary processing (depression 
removing, flow direction determination and flow 
accumulation value calculation) is based on the 
algorithm proposed by Jenson and Domingue9).   
Topographic index derivation was obtained by using 
DEM algorithm proposed by Quinn10).  

  
(2) Rainfall and discharge data 

Rainfall data of the Yasu River basin was 
collected from four rainfall gauging stations inside 
the watershed; they are Yasu, Minakuchi, Kouka 
and Oogawara.  The average precipitation was 
obtained by using Thiessen polygon method.  The 
discharge data for the Yasu River basin is collected 
from the ground gauging station and a rating curve 
is applied for transferring the water level to the 
discharge.  

For the Kamishiba basin, a radar rainfall data 
with time interval of 10 minutes is transferred to the 
average rainfall with time interval of 1 hour along 
the corresponding catchment range.  Discharge 
data is acquired from the inflow data of the 
Kamishiba dam. 

For each watershed, one flood event is selected 
for Monte Carlo simulation. Random generated bias 
items are added to the original input series for every 
time step in order to formulate the rainfall 
realizations with specified distribution and standard 
deviations.  A normal distribution with a mean 



 

 

5 parameter TOPMODEL (Yasu)
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Fig.4 EU, IU and SU of the five parameter TOPMODEL which 

applying to the Yasu River basin. 
 

6 parameter TOPMODEL (Yasu)
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Fig.5 EU, IU and SU of the six parameter TOPMODEL which 
applying to the Yasu River basin. 

 
equals to zero and standard deviation from 1.0 to 
9.0 (mm/hr) is used to generate the rainfall 
realizations under specific magnitude of input 
uncertainty.  For each specific magnitude of input 
uncertainty, 100 rainfall realizations and 100 
parameter sets are derived.  10,000 model 
outcomes are generated from the combination of the 
100 rainfall realizations and the 100 parameter sets 
of input from the two TOPMODEL which were 
derived previously. 

 
5. RESULTS  
 

The variation of the categorized uncertainty 
(entire, inherent and system uncertainty) under 
different levels of input uncertainty is acquired 
through the pseudo validation process. Fig.4 through 
Fig.7 are the variation of the categorized uncertainty 
of the five and six parameter TOPMODEL applied in 
the Yasu River basin and the Kamishiba basin.   

The results show that there is a similar tendency 
within larger magnitudes of the input uncertainty, 
for the five parameter TOPMODEL to outperform 
the six parameter TOPMODEL. Another interesting 
result is that apparently the performance of the 

5 parameter TOPMODEL (Kamish iba)
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Fig.6 EU, IU and SU of the five parameter TOPMODEL which 

applying to the Kamishiba basin. 
 

6 parameter TOPMODEL (Kamishiba)
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Fig.7 EU, IU and SU of the six parameter TOPMODEL which 

applying to the Kamishiba basin. 
 

TOPMODEL (no matter what the vertical 
calculation component is), when applied to the 
Kamishiba basin, is better than the TOPMODEL 
applied to the Yasu River basin.  This indicates 
that the application of TOPMODEL on the 
Kamishiba basin is more appropriate than the 
application on the Yasu River basin. Another 
explanation is the quality/representativeness of the 
rainfall and discharge data, which were used for the 
pseudo validation process. Since the average rainfall 
data acquired for the Kamishiba basin is transferred 
from the calibrated radar data, the precision is 
higher than the average rainfall data acquired for the 
Yasu River basin, which is transferred from four 
ground gauging stations. This is a good proof that 
the quality of the data used for validation is essential, 
and the proposed method well reflects this condition.  
Fig.8 is the MSII of the TOPMODEL with different 
vertical calculation components applied to the 
different catchments. As described in the previous 
section, a smaller magnitude of MSII indicates a 
better model structure/reliability against the level of 
input uncertainty. 

The rapid ascending tendency of the six 
parameter TOPMODEL, when applied to the Yasu 
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Fig.8 MSII of the TOPMODEL with different vertical 
calculation component which applying to different catchment. 
 
River basin, implies that it has the lowest reliability 
against increasing inputs of uncertainty amongst the 
four tests. The five parameter TOPMODEL, when 
applied to the Kamishiba basin, reveals that it has 
the best reliability against the different levels of 
input uncertainty due to its MSII mildly ascending 
tendency. The reason that the five parameter 
TOPMODEL is more stable than the six parameter 
TOPMODEL is due to the physical bases of its 
parameter. Even the time delay constant td performs 
well during small magnitudes of the input 
uncertainty, with increasing input uncertainties, 
parameters lacking physical bases are incapable to 
compensate for these discrepancies. The results also 
implicitly indicate that if the quality/ 
representativeness of the data used for validation 
process is high preciseness, the model structure 
won’t matter the simulation so much. 
  
6. CONCLUSIONS AND DISCUSSIONS 

 
In this study, a pseudo validation algorithm was 

manipulated and is used to assess TOPMODEL in 
the context of different vertical flux calculation 
components when applied to two Japanese 
catchments. The results show that TOPMODEL 
with five parameters perform better than the six 
parameters TOPMODEL, both in the Yasu River 
basin and in the Kamishiba basin under a larger 
magnitude of the input uncertainty, but for smaller 
magnitudes of the input uncertainty, the opposite is 
true. TOPMODEL with five parameters is more 
stable than the one with six parameters in both 
catchments. The adaptability of the TOPMODEL 
when applied to the Kamishiba basin catchment was 
superior to that of the catchments in the Yasu River 
basin. This indicates that the quality/ 
representativeness of the observed data of the the 
Kamishiba basin is better than that of the Yasu river 
basin.  

The algorithm generates the parameter set 
space by introducing noise items into input data 
with a specified probability distribution. This 
reflects the truth that the parameter uncertainty 
came from the uncertainty of data at hand and the 
way the model structure responds to it. This 
indicates the pseudo validation algorithm is not only 
capable of assessing the reliability of the hydrologic 
model structure and the calibration process, but also 
implicitly indicates the quality and the 
representativeness of the data used for validation 
process. 

According to the research results, the pseudo 
validation algorithm can be an efficient instrument 
for model refinement assessment.  However, 
various rainfall styles should also be taken into 
consideration.  This will be done in the following 
research. 
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