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    The aim of this study is to assess the uncertainty in precipitation using a distributed hydrological 
model. Firstly, a true model is established and then error is applied to true precipitation. The uncertainty 
is analyzed by using sensitivity analysis approach for systematic error and Monte Carlo approach for 
random error. Next, the parameters of the model are calibrated with erroneous data. Finally, the impact of 
low precipitation is assessed by neglecting different levels of low precipitation. The result of the study for 
a Nepalese river basin shows that a systematic error exceeding +/-10% causes significant impact on 
simulated flows. The impact of normally distributed random error with standard deviation equals to 10% 
of observed precipitation is not substantial. The calibration of parameters can adjust the low error, but the 
higher errors should not be compensated by just fitting the curve. Error on low precipitation of amount 
less than 0.5mm measured with some error does not affect the flood discharge. 
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1. INTRODUCTION 
 
   Due to the randomness in nature and the lack of 
knowledge, the result obtained from a hydrological 
model is always subjected to uncertainty. The 
uncertainty in output of the hydrological model is a 
function of uncertainty in data, parameter and 
model. Uncertainty in input data occurs due to the 
measurement errors and spatial and temporal 
sampling errors. There is uncertainty in parameter 
due to the lack of accuracy with which the 
parameters can be estimated or due to the limited 
understanding of the relationship. The model 
uncertainty arises due to the inability of the model 
to truly represent a natural process. An extensive 
review on sources of uncertainty in hydrological 
model and various methods for assessing the 
uncertainty can be found in Melching 1). 
   In most of the hydrological modeling studies, 
parameter uncertainty is a major focus. Parameter 
calibration in hydrological modeling reduces 
parameter uncertainty as well as compensates data 
and model uncertainty to some extent. Besides 

calibration, additional information on parameters, 
good quality data of sufficient resolution, selection 
of appropriate model for a particular situation are 
also important to improve the model results. 
   Precipitation is the most important input of 
hydrological model as it is a major driver of the 
hydrological process. Two sources of uncertainty 
influence the precipitation measured by a rain 
gauge. Firstly, the uncertainty arises due to the 
systematic error (bias) or random error in 
measurement. The sources of systematic error are: 
human error, site error, instrumental error, 
evaporation error, wind error, wetting error, 
splashing error, drifting error. Random error occurs 
due to human error in observation, error in 
instrument and due to small variations in 
meteorological conditions. Secondly, spatial 
interpolation of point data to areal data adds 
uncertainty to the precipitation input.  
   The performance of any hydrological model is 
highly dependent on the precipitation data. For a 
model whose parameters have to be determined by 
calibration, the uncertainty in precipitation 
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influences the model parameters as well. In 
hydrological modeling studies, a few papers have 
considered input data uncertainty, especially 
precipitation as one of the dominant sources of 
uncertainty, e.g.2), 3), 4). Some papers have analyzed 
precipitation uncertainty as well as other sources of 
uncertainty5), 6), 7). Review of various papers 
mentioned above makes us conclude that the 
research on both the systematic and random 
uncertainty in precipitation for a distributed 
hydrological model is still sparse. Therefore, the 
objectives of this study are to analyze the impact of 
systematic and random uncertainty in precipitation 
on the modeling results for a distributed 
hydrological model and to identify the extent of 
error beyond which it becomes more significant in 
modeling.  
 
2. STUDY AREA 
 
   The study area for the research is the West Rapti 
River Basin (Fig. 1), which is located in the 
mid-western region of Nepal. The catchment area of 
the basin is 5450 square kilometres and the length of 
main stream channel is 208 km. The basin elevation 
ranges from 205 m to 3437 m above mean sea level. 
The river originates from the middle mountains of 
Nepal, then enters to the flat area and finally drains 
to India to join the Ganges River. The source of 
runoff is monsoon rainfall and groundwater. Daily 
data from 5 rainfall stations and 3 discharge stations 
from 1980-1993 is available for the study. The 
average annual rainfall during this period is 
1580mm and mean annual discharge at Jalkundi (the 
most downstream station) is 113.7m3/s. Landuse, 
topographic, soil and potential evaporation (PET) 
data are obtained from freely available global data 
set: specifically, topographic data from United 
States Geological survey (GTOPO30), land use data 
from International Geosphere-Biosphere 
Programme, soil data from Food and Agricultural 
Organization, PET data from United Nations 
Environment Programme, Global Resource 
Information Database. 

3.  HYDROLOGICAL MODEL 
 
   The hydrological model to be used for the study 
is BTOPMC (Version 1.0). The meaning of 
BTOPMC is “Blockwise use of TOPMODEL with 
Muskingum-Cunge routing”. This is a distributed 
hydrological model developed at the University of 
Yamanashi, Japan8), 9). BTOPMC is an extension of 
TOPMODEL concepts10), which is developed in 
order to overcome the limitations of using the 
TOPMODEL for large river basins. For large river 
basins, spatial heterogeneity and timing of flow to 
outlet are the important factors. For representing 
spatial variability in BTOPMC, a basin is composed 
of grid cells, which can be divided into sub-basins, 
where each sub-basin is considered as a block or a 
unit. The runoff generation at each grid cell is based 
on TOPMODEL concepts. To consider timing of 
flow, flow from each grid cell is routed to the outlet 
using Muskingum-Cunge routing. BTOPMC can 
accommodate the spatial variability in forcing data, 
topographic, soil and vegetation data. The parameter 
variability in BTOPMC is considered in the 
following way: Transmissivity decay factor (m) and 
Manning roughness (n0) for each sub-basin, 
Maximum root zone capacity (Srmax) for each land 
use classes and Saturated transmissivity (T0) for 
each soil texture.  
 
4. METHODOLOGY 
 
(1) Setting up of a true model 
   A set of precipitation and discharge is selected 
and the best set of parameters is identified by 
calibrating the BTOPMC model. The chosen set of 
precipitation is considered as true precipitation, the 
optimized parameters are considered as true 
parameters and the simulated discharge is 
considered as true discharge. 
 
(2) Uncertainty analysis 
a) Error model 
   Error model for systematic error: For studying 
the effect of systematic error, perturbation is applied 
to the observed precipitation using the following 
form of error model: 

( ) mmme PkPkPP +=+= 1.  (1) 
where = perturbed precipitation, = observed 
precipitation, k = coefficient to indicate how much 
bias is added or subtracted from the observed 
precipitation. This approach is a sensitivity analysis 
approach used as a mean for uncertainty analysis. 
This form of equation is suitable for expressing 
systematic error because the systematic error is a 
fixed error and the equation expresses the 
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Fig.1 Map of the West Rapti River Basin 

 



 

systematic error as a fixed percentage of measured 
value for all measurements.  
   Error model for random error: In BTOPMC, 
spatial distribution of precipitation is obtained by 
using Thiessen polygon approach, where all the 
grids within the polygon have the same values of 
precipitation as the point precipitation gauge data. 
To study the uncertainty in discharge due to the 
random error in precipitation, Monte Carlo 
simulation approach is applied. To apply this 
approach, perturbation to precipitation is introduced 
for each gauging station data using the following 
form of error model: 

eσPP me .+= ;            (2) mPrσ .=
where = perturbed precipitation, = observed 
precipitation,

eP mP
σ = assumed standard deviation of 

additive random error relative to the measured 
precipitation, r = coefficient, e = random error 
component assumed normally distributed with mean 
equals zero and standard deviation equals one. In 
the above formulation, the error is assumed to be 
independent in time and space. With this 
formulation if observed precipitation is zero, the 
error is also zero. Thus, the zero precipitation events 
become unaffected. 
   Error model for very low precipitation: Trace 
precipitation, which is beyond the resolution of rain 
gauge can not be measured and is usually neglected 
in modeling. To understand the effect of neglecting 
very low daily precipitation, performance of 
BTOPMC model is assessed by neglecting different 
levels of low precipitation. 
b) Assessment of the impact of precipitation 
uncertainty on model results 
   For analyzing the impact of systematic error, 
different values of k are taken and BTOPMC model 
is run keeping other inputs and parameters at true 
values. For studying the influence of random error, 
Monte Carlo simulation is performed by taking 
different values of r keeping other inputs and 
parameters at true values. Then, uncertainty in 
discharge due to random error is analyzed from the 
outputs of n number of Monte Carlo simulations. 
Finally, the impact of neglecting very low 
precipitation is analyzed. 
c) Assessment of the capability of parameter to 
absorb precipitation uncertainty 
   The purpose of calibration is to bring model 
results as close as observed values by tuning 
parameters. However, if the parameters of the model 
are determined by using erroneous precipitation 
data, the parameter will also be affected. To 
understand to what extent the parameter calibration 
can absorb precipitation uncertainty, the parameters 
of BTOPMC model are calibrated for different 

values of k and r, and the performance of the model 
with calibrated parameter is compared to the true 
model. 
 
5. RESULTS AND DISCUSSIONS 
 
(1) True model 
   Digital Elevation Map (DEM) data, soil type 
data, land use data, precipitation data, potential 
evaporation data and flow data which are required 
for running BTOPMC, are formatted as per the 
requirements of BTOPMC model. The land use data 
is reclassified into 4 classes in order to reduce 
equifinality and increase efficiency in computation. 
The basin is divided into two sub basins (Fig. 2). 
Time series data from 1980 to 1987 is used for 
calibration and from 1988 to 1993 is used for 
validation. The calibrated parameters of the model 
are: m (sub-basin 1) = 0.06m, m (sub-basin 2) = 
0.04m, n0 (sub-basin 1) =0.02, n0 (sub-basin 2) 
=0.01, Srmax (Deep rooted) = 0.05m, Srmax (Shallow 
rooted) = 0.04m, Srmax (Shallow rooted & Irrigated) 
= 0.03m, Srmax (Impervious) = 0.0001m, T0 (Clay) = 
0.5m2/h, T0 (Sand) = 7m2/h, T0 (Silt) = 3m2/h. 
Nash-Sutcliffe coefficient of efficiency (NSE) at 
Jalkundi station is 61.55% for calibration and 
66.06% for validation. The NSE in very high range 
could not be obtained because there is uncertainty in 
spatial distribution of precipitation (5 rainfall 
stations for 5450 km2) and uncertainty in manual 
parameter estimation as no automatic optimization 
has been implemented in BTOPMC. The simulated 
and observed hydrograph for validation at Jalkundi 
station is shown in Fig. 3. The performance of the 
model is quite good for most parts of the 
hydrograph, except a few peaks, which are 
under-predicted by the model. For uncertainty 
analysis, the observed precipitation set from 
1980-1987, the calibrated parameters and the 
simulated discharge of the same period are 
considered as true set of precipitation, parameters 
and discharge respectively. 
 
(2) Assessment of precipitation uncertainty 

Fig.2 Sub-basin division of the West Rapti River Basin

 



 

  

   The impact of precipitation on model results is 
analyzed by using Nash-Sutcliffe coefficient of 
efficiency (NSE), Bias in runoff volume for overall 
time series and peak flow events, Normalized Root 
Mean Square Error (NRMSE) for low flow and high 
flow (normalized by average flow). Peak flow of 
magnitude greater than 500m3/s is considered and 
the threshold value for separating low and high flow 
is set at 50m3/s. The result for the most downstream 
station is presented here. 
a) Impact of systematic error 
   The magnitudes of systematic error in 
precipitation from various factors are11): wind error 
= 2%-10% for rain and 10%-50% for snow, wetting 
error = 2%-10%, evaporation error = 0%-4%, 
splashing error = 1%-2%. Including other errors, the 
maximum systematic error in precipitation is around 
30% for rain and 70% for snow. In this study the 
maximum range of systematic error is kept at +/-50, 
i.e. k is varied from -0.5 to 0.5.  
   The result of the analysis (Fig. 4) shows that for 
k = -0.1 and 0.1, the NSE decreases by 5.4% and 
4.9% of true model respectively. Bias in runoff 
volume (Table 1) for overall time series for k = -0.1 
and 0.1 is -15.2% and 15.6% respectively, and for 
peak flow events, the bias is -19.1% and 19.6% 
respectively.  Further increase of the error in either 
direction makes the performance of the model worse 
and worse.  
   Next, for the different values of k, the model 
parameters are calibrated. Comparison of model 

performance with true and calibrated parameters 
(Fig. 4) shows that for k = -0.5 to 0.5 in step of 0.1, 
the NSE is improved by 53.3%, 39%, 24.2%, 
11.43%, 2.51%, 3.4%, 13.26%, 37.75%, 68.1%, 
120.13% respectively. Though the performance of 
the calibrated model is better than the un-calibrated 
case due to curve fitting procedure, the model 
performance becomes worse for higher errors even 
for calibrated model. Parameter calibration can 
adjust some amount of error in data, but we can not 
expect that it can adjust any amount of data. The 
higher the error in data, the worse the performance 
of the model. Therefore, the NSE for recalibrated 
case degraded systematically. 

 

   The performance of the model for high flow and 
low flow is shown in Fig. 5. The result shows that 
increasing error in rainfall during high flow makes 
the model performance worse. This is obvious 
because the high flow period, which is the monsoon 
period, is the main rainfall period and any error on 
rainfall during this period propagates through the 
model thus affecting its performance. The impact of 
error on low flow is insignificant because during 
low flow period, there is no or very little rain. 
   It is seen from Fig. 4 that the performance curve 
for positive k and negative k is asymmetric. 
Similarly in Fig. 5, the trend of the curves is 
asymmetric. Increasing k in the positive side 
degrades the model performance rapidly, while 
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Table 1 Bias in runoff volume (%) due to systematic error 

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

19/11/1987 02/04/1989 15/08/1990 28/12/1991 11/05/1993
Date

D
ai

ly
 D

is
ch

ar
ge

 (m
3 /s

)

Simulated
Observed

k For whole 
period 

For peak flow 
events 

-0.5 -71.5 -82.8 
-0.4 -59.0 -70.4 
-0.3 -44.5 -54.6 
-0.2 -31.0 -38.3 
-0.1 -15.2 -19.1 
0.1 15.6 19.6 
0.2 29.4 37.6 
0.3 47.3 60.1 
0.4 61.1 78.4 
0.5 79.6 102 

-60
-40
-20

0
20
40
60
80

100
120

-0.6 -0.4 -0.2 0 0.2 0.4 0.6K

N
as

h-
Su

tc
liff

e 
C

oe
ffc

ie
nt

With True parameters

With Calibrated parameters

Fig.4 Impact of systematic error on overall model 

       performance using P ( ) me Pk+= 1  

Fig.3 Validation at Jalkundi 

 



 

 
increasing k in the negative side has lower effect 
than the positive side. This implies that negative k is 
safer side, while positive k is risky side. For linear 
model, the same bias in either direction has same 
impact. However, as BTOPMC is a non-linear 
model, the same bias in positive direction has higher 
impact.    
b) Impact of random error 
   Though the exact amount of the random error 
can not be specified, its impact on modeling results 
can be quantified by uncertainty analysis. This study 
makes use of Monte Carlo framework for this 
purpose by taking r values equals to 0.1, 0.3, 0.5 
and 0.7. For each case, 50 samples of precipitation 
data set are generated randomly according to 
equation (2). If the perturbed precipitation becomes 
negative due to the negative random number, then it 
is taken as zero. The occurrence of negative values 
is usually low. An example of one realization shows 
that negative values occurrence expressed as 
percentage of total number of rainy days are: for r = 
0.1, no negative value, for r = 0.3, less than 0.3%, 
for r = 0.5, 2%-3%, for r = 0.7, 6%-8%. For each 
case, average performance indicator is computed 
from the performance of 50 simulations.  
   The result of the analysis (Fig. 6) shows that the 
decrease in the NSE from the true model for r = 0.1, 
0.3, 0.5 and 0.7 is 0.4%, 3.1%, 8.2% and 15.9% 
respectively. As shown in Table 2, the bias in 
runoff volume for r = 0.1 and 0.3 is very low; 
0.071% and 0.83% for overall time series and 
0.01% and 0.3% for peak flow events of value 
greater than 500m3/s. The result makes us clear that 
for r = 0.1, the impact is negligible and increase in r 
beyond that decreases the performance of model 
although the decreasing rate is small until r = 0.3. 
   Next, the parameters of model are calibrated for 
different values of r. The comparison of result with 

 
true parameters (Fig. 6) shows that the calibration 
improves the NSE by 0.1%, 0.7%, 1.1% and 2.2% 
for r = 0.1, 0.3, 0.5 and 0.7 respectively. As the 
impact of errors on un-calibrated model is low, the 
difference in performance of calibrated and 
un-calibrated model with the increase in r is not so 
big like the systematic error case. Similar to the 
systematic error case, the NSE is degraded 
systematically with the increase of errors even for 
recalibrated case. 
   NRMSE for both high flows and low flows due 
to increasing standard deviation of random error is 
shown in Fig. 7. As in the case of systematic error, 
the effect on low flow is negligible because it is a 
period with no or very little rain. As for high flow, 
the performance is decreasing with increasing r due 
to the propagation of error imposed on rainfall. 
c) Very low precipitation 
   To study the impact of neglecting low 
precipitation, precipitation less than 0.5mm, 1mm, 
2mm, 3mm, 4mm and 5mm are neglected 
respectively with other inputs and parameter same 
as true model. As an example, the output 
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hydrograph for a small period with a peak is shown 
in Fig. 8. The result shows that the peak magnitude 
is decreased with neglecting higher values of 
precipitation. In particular for this peak, the peak 
magnitude is reduced by 1.1 mm/day for neglecting 
precipitation less than 5mm/day. When precipitation 
less than 0.5mm/day is neglected, the peak is 
reduced by 0.24 mm/day. Very little rain, beyond 
the precision limit of the instrument (0.1 mm in 
most cases), can not be measured well. This study 
concludes that even if there is some error in 
measuring such low precipitation (0.5mm/day in 
this case), this sort of error does not affect peak 
discharge as most of it is lost due to evaporation.      
 
6. CONCLUSIONS 
 
      In general, the impact of input data error 
depends on the type of model, type of basin and the 
type of error model. This study assessed the 
precipitation uncertainty for a basin in Nepal using 
BTOPMC as an example of a distributed model. 
The conclusions of the study are summarized below: 
I. For a systematic error of +10% and -10%,  
decrease in NSE from true model is 5.4% and 4.9% 
respectively; bias in runoff volume is -15.2% and 
15.6% respectively; and bias in runoff volume for 
peak events is -19.1% and 19.6% respectively. It is 
intuitive that if the systematic error is very small, 
the effect is also small and if the error is very large, 
the effect is also very large. According to this study, 
a systematic error exceeding 10% of observed 
precipitation is significant in modeling. Therefore, 
systematic error should be identified and reduced. 
The ways of reducing systematic error are: 
implementation of quality control measures, 
application of correction methodology.  
II. For a random error with standard deviation 
equals 10% of observed precipitation, decrease in 
NSE from true model is 0.4%; bias in runoff volume 
is 0.071%; and bias in runoff volume for peak 
events is 0.01%. The random error, which is 
unpredictable and non-constant, might be either 
positive or negative having long term expected 
value equals to zero. Slight increase or decrease of 
precipitation due to random effect acts as a 
compensating mechanism and hence the random 
errors have low impact on model results than the 
systematic error. However, if the random error is 
larger with standard deviation greater than 10% of 
observed precipitation, then its effect is detrimental 
to model results.  
III. The calibration of model with systematic error 
of +10% and -10% in rainfall increases NSE by 
2.51% and 3.4% respectively. In case of random 
error in precipitation, NSE is improved by 0.1% for 

r = 0.1. For larger error, though NSE is improved 
due to curve fitting, the model performance is 
deteriorating with increase of error. This implies 
that calibration can adjust the error of low 
magnitude, but errors of higher magnitude can not 
be just ignored. Therefore, input data uncertainty 
has to be given due consideration in hydrological 
modeling. 
IV. The impact of neglecting precipitation less than 
0.5mm/day does not affect peak discharge. This 
means the small error due to resolution limit is not 
very significant for flood discharge.  
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