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    This study proposes the use of multiobjective optimization of a conceptual hydrological model with 
perturbed data as a sampling method to reproduce the posterior distribution of parameters for the 
quantification of uncertainty. The Pareto front is found to be sensitive to perturbed data, so model parameters 
are optimized with different combinations of perturbed data sets to sample behavioral parameters. Latin 
Hypercube Sampling (LHS) method was used to sample the behavioral parameters in order to evaluate the 
performance of the proposed method. The performance of simulation for all parameter sets sampled by both 
methods is evaluated and presented in objective space. The proposed method sampled large parameter sets 
more efficiently near optimal compared with LHS. The study demonstrates that the Elitist Non-dominated 
Sorting Genetic Algorithm (NSGA-II) a multiobjective optimizer, with perturbed data set can efficiently 
explore near optimal parameter space of a conceptual hydrological model. 
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1. INTRODUCTION 
 
    Conceptual hydrological models are often used to 
predict the relationship between the rainfall and runoff, 
which is a very complex phenomenon. The parameters 
of such models are determined by calibration as most 
of the model parameters are conceptual 
representations of watershed characteristics. Model 
calibration allows reducing parameter uncertainty and, 
therefore, uncertainty in simulation result.  Earlier 
work on automatic calibration of hydrological models 
suggests that no single objective function is adequate 
to reproduce different aspects of the hydrograph 
which led to the formulation of calibration as a 
multiobjective problem1), 2), 3). Evolutionary algorithms 
(EAs) have been recognized to be possibly well-suited 
to multiobjective optimization since they can search 
for multiple solutions in parallel. All multiobjective 
EAs clearly outperformed a pure random search 

strategy 4).The first pioneering studies on evolutionary 
multiobjective optimization appeared in the mid-
eighties and further advances in EAs were proposed in 
the years 1993-19944), 5). Later, these approaches and 
their variants were successfully applied to various 
multiobjective optimization problems. The use of 
Pareto based approaches are growing in hydrological 
models 3), 6).  
   The identification of a best parameter set is 
necessary for meaningful prediction of flows and 
parameter regionalization, which however is difficult 
to realize as measured data for which the calibration is 
done are not error free and the model never perfectly 
represents the system. In addition to the identification 
of best parameter the realistic assessment of parameter 
uncertainty is essential as multiple parameter sets 
exist for similar simulations. The first-order 
approximations to parameter uncertainty near 
optimum7), evaluation of likelihood ratios (Beven and 
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Binley, 1992) 8) and Markov Chain Monte Carlo 
Methods7) are some of the approaches used for the 
assessment of parameter uncertainty of hydrological 
model. For nonlinear models, with strong parameter 
interdependence, first order approximation is quite 
poor9).  
    The objective of this study is to introduce a 
sampling methodology by coupling multiobjective 
calibration framework with perturbed data set to 
efficiently explore optimal parameter space for the 
reproduction of posterior distribution of parameters to 
infer parameter uncertainty. The use of large 
parameter set near optimal to derive the posterior 
distribution of parameters reduces the parameter 
uncertainty arising due to suboptimal parameter space. 
 
2. METHODOLOGY 
 
(1) Multiobjective Formulation  
     The use of single objective to evaluate the 
simulation can lead to solutions fitting one aspect of 
the observed hydrograph at the expense of another. To 
reproduce different aspect of the hydrograph multiple 
objectives must be considered. To incorporate 
different objective prior and posterior approaches 
have been used in the past1), 2), 3) 6). Though prior 
approaches are simple, they require prior knowledge 
regarding the problems and lack diversity. Posterior 
approaches especially Pareto based, though more 
complex and computationally expensive guarantee 
convergence to the Pareto optimal front with good 
population diversity. A general multiobjective 
optimization problem includes a set of ‘m’ decision 
variables (parameters), and a set of ‘q’ objective 
functions as in Eq. (1). The goal is to  
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    Pareto based method are posterior approach that 
uses the concept of Pareto dominance given by Eq. (2) 
to incorporate different objectives. Genetic Algorithm 
works with a population of solution which makes 
them naturally suited to solve multiobjective problems 
for finding multiple Pareto-optimal solutions. Pareto-
based approaches were proposed by Goldberg in 1989 

and have become a major focus of Multiobjective 
genetic algorithm (MOGA) research which was 
explicitly based on the definition of Pareto optimality. 
To assure a uniform sampling of the Pareto set, 
applications of pareto-based MOGA Horn et al. (1994) 

4), and Srinivas and Deb (1995) 5) have incorporated 
niching schemes.  
    The notion of non-dominating sorting genetic 
algorithm (NSGA) was first suggested by Goldberg in 
1989, and then presented by Srinivas and Deb (1995)5) 

for use on multiobjective optimization problems. 
Based on their findings, Srinivas and Deb (1995) 5) 

assert that NSGA can tackle higher dimensional and 
more difficult multiobjective problems. NSGA-II10) 
significantly improves upon the original NSGA by (1) 
invoking a more efficient non-domination sorting 
algorithm, (2) eliminating the sharing parameter and 
(3) adding implicitly elitist selection method that 
greatly aids in capturing high order Pareto surface. 
      The objective function can be chosen to match an 
assumption regarding the distribution of the errors 
present in the observed data. The Root mean square 
error (RSME) is the maximum likelihood estimator 
with an assumption that measurement errors are 
normally distributed and uncorrelated. The Nash 
Sutcliffe efficiency (NSE) given by Eq. (3), a 
normalized form of RMSE is commonly adopted for 
evaluating the simulated hydrograph.  
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where Q obs is the average Observed discharge and ‘n’ 
is the number of time step. The different variants of 
Eq. (3) are considered as objective function to match 
peak and low flow events2). Peak flow NSE is 
calculated using Eq.(3) for discharge greater than peak 
flow threshold, and Low flow NSE is calculated using 
Eq.(3) for discharge less than low flow threshold 
value. Similarly, the Heteroscedastic maximum 
likelihood estimator (HMLE) assumes that the 
measurement errors are normally distributed with zero 
mean but having Heteroscedastic variance 
proportional to the observed flows11). The normalized 
form of HMLE is given in Eq. (4).  
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 where iw is the residual at i and is computed as 
)1(2 −= λα iiw ,λ is the variance stabilizing parameter. 

RMSE tend to emphasize minimization of peak flow 
error while the HMLE tends to provide more 
consistent performance across all flow range 1). Yapo 
et al. (1998) 1) suggested the use of iα as observed 
flow resulted in more stable estimator. In this study 
four objective functions as mentioned earlier are 
considered for the calibration of model to consider 
different aspect of hydrograph. 
 
(2) Description of model 
      A Tank model with soil moisture structure 
suggested by Sugawara (1995)12) for humid basin is 
used which comprises four vertical tanks with primary 
storage (PS) and secondary storage (SS) as shown in 
Fig. 1. Water in each tank partially discharges through 
a side outlet and partially infiltrates through a bottom 
outlet to the next lower tank. The storage level and the 
capacity of PS and SS govern the exchange of water 
between these two storages. A12, A13, A22, A32 and 
A41 are the runoff coefficient of each tank, A11, A21, 
and A31 are the infiltration coefficient,  H11, H12, 
H13, H21, H31 are the storage coefficient of each 
tank, T1 is the coefficients that govern the flow of 
water between PS and  SS. Similarly T2 is the 
coefficient that governs the flow between PS and 
Tank-B. A total of 15 parameters are subjected to 
calibration. SA, SB, SC, SD, Xs, Xp are the initial 
storage as shown in Fig.1. H11 and S1 are the 
saturation capacity of PS and SS respectively.  
     To optimize the parameter of Tank model, NSGA-
II10) is used as a optimizer. In NSGA-II,   a random 
parent population of size ‘N’ is created which is sorted 
based on the non-domination. Each solution is 
assigned fitness equal to its non-domination level. 
Genetic operators are applied to create an offspring 
population of same size. Two sets are combined 
together and sorted according to non-domination. The 
new population is filled by solutions of different non-
dominated fronts starting from the best non-dominated 
front and continues with solutions of the subsequent 
non-dominated front. All fronts, which could not be 
accommodated, are simply deleted, as the size of new 
population is just half of the size of the combined one. 
Niching based on the crowding comparison10) 
procedure is use to choose the members of the last  
front which reside in the least crowded region of that 
front. NSGA-II is capable for higher dimension pareto 
optimization by generating uniformly distributed 
pareto front10). 

 
Fig. 1 Schematic diagram for Tank Model 

 
(3) Study area 
    Uncertainty assessement of the parameters of the 
Tank model is investigated using historical data 
(1999-2001) of Ukaibashi, a 487 km2 sub basin of the 
Fuji river basin, located in the central part of Japan. 
The basin lies in an inland region. The mean annual 
precipitation is approximately 2,100mm. The 
meteorological data of Mitomi, Kamikane, Kurokoma 
and Katsunuma stations was used for this study. 
 
(4) Sampling methodology 
      Uncertainty quantification is essential in 
numerical models that are used for prediction, which 
can be obtained by mapping the posterior distribution 
of parameters. The classical approximation to obtain 
the posterior probability density function of the 
parameter uses a first order Taylor series expansion of 
the nonlinear model equations evaluated at the 
globally optimal parameter. Using quadratic 
approximations to the response surface in the region 
of the best parameters, the multivariate joint 
probability density function of β (parameter) is then 
expressed as Eq.(5)13).  
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Where X  is a sensitivity matrix evaluated at 
optβ (optimal parameter). The inferences about β can 

be made assuming the posterior distribution of β is 
multivariate normal. For rainfall runoff models, such 
approximation results in poor estimation of posterior 
distribution of parameters. Beven and Binley8) have 
abandoned traditional statistical inference in favor of 
more general Monte Carlo (MC) based methods. MC 



 

based methods are based on the assumption that it is 
sufficient to have a large number of random sample 
drawn from a distribution to approximate the form of 
the density. The LHS and Markov chain Monte Carlo 
(MCMC) both are efficient sampling methods 
compared to traditional Monte Carlo methods. 
    The study proposes an indirect method of sampling 
the multidimensional parameter space to infer the 
uncertainty. To conduct a search near global optimum 
that reveals many behavioral parameter sets resulting 
similar result, perturbed data sets and multiple 
objectives are used. The perturbation of input data 
will lead the search algorithm to explore a large 
number of points near global optimum, sufficient 
enough to map the posterior distribution. It is assumed 
that the input and output uncertainty quantification is 
given by independent normally distributed random 
variables. The new perturbed observations are 
generated by adding a bias drawn from a normal 
distribution with mean zero and predefined variance 
to an original value. The general error model is shown 
in Eq. (6) and (7) 
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where iQ  and iR  are the perturbed runoff, and 
rainfall, iQ and iR  original runoff and rainfall data 
respectively. The adopted procedure here after 
referred as MO, is as follows. 

1. Generate the synthetic rainfall and discharge 
data using Eq.(6) and Eq.(7) 

2. The multiobjective optimization with four 
objective functions NSE, HMLE, Peak flow 
NSE, and Low flow NSE are used with each 
of the synthetic data to obtain large sets of 
Pareto optimal solution. 

3. Eq. (8) is used to evaluate the likelihood 
function as the errors assumed are Gaussian. 
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where σ is the standard deviation (STD) 
of the observed runoff. 

4. Eq. (9) is used to compute the profile 
likelihood ratio. The parameter set satisfying 
this equation are used to estimate statistical 
measure of the posterior distribution for each 
of the parameters. 
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where pβ optimal parameter vector. For large  

samples, under the true parameter value, )(θpW is 
approximately distributed as a 2χ  random variable 
with p degree of freedom. The confidence region 
for β  consists of all parameter values that would 
not be rejected at the α  significance level.  

 
3. RESULTS AND DISCUSSION 
 
    The application of proposed methodology to a 
hydrologic model is illustrated by calibrating the Tank 
model using historical data from Ukaibashi basin.  
    The plot of Pareto front in two dimensions (for 
convenience) for different perturbed rainfall data is 
shown in Fig.2. Rainfall is perturbed with Gaussian 
noise of mean zero and STD of 0, 2, 6 and 8 mm/day 
respectively. It is observed that the perturbation of 
input data has an impact on the shape of the Pareto 
front. The Pareto front moved towards higher 
efficiency side, when data were perturbed with N(0,2) 
and N(0,6) ,where as the pareto front for N(0,8) fell 
well below the true (without perturbation) pareto font. 
Corruption of rainfall with white noise having higher 
variance offset the relationship between rainfall and 
runoff which lead the movement of Pareto front on 
lower efficiency region. It is also observed that due to 
the inclusion of different objective function the 
number of Pareto optimal solutions largely increased 
due to Pareto dominance relationship given in Eq.(2) 
These two consideration are used to sample 
parameters in the proposed methodology.  
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Fig. 2 Effect of perturbed rainfall with Gaussian noise (N (µ, σ)) 
on Pareto optimal front. 
 
  Input error is present when measurements from only 
a small number of gauges are used, when a more 
extensive network might be necessary. The variances 
of rainfall perturbation in Eq. (6) are chosen based on 
the covariance between rainfall at each gauging 
station and aerial average precipitation (original 
value). The rainfall stations are not well distributed in 
the Ukaibashi basin. The covariance between the 
aerial average rainfall and spot measurement were 
observed as high for some year. On the basis of this  



 

0.40

0.50

0.60

0.70

0.80

0.90

0.75 0.77 0.79 0.81 0.83 0.85
NSE

H
M

LE

MO LHS

Points in 
95%CR

 
Fig. 3 The objective space for sampled parameter. Rectangles in 
top-right area are the points sampled by MO where as the cross 
marks more distributed on lesser efficiency region are sampled by 
LHS. Points sampled in 95%CR using profile likelihood ratio lie 
within the circle shown above .The points sampled in 95%CR by 
MO (~1000) is much higher than those of LHS (~50). 
 
covariance, rainfall data are perturbed with white 
noise of zero mean and 0, 4, 6, 8 mm/day STD 
respectively preserving non-negativity in rainfall 
value using Eq.(6). For runoff 0, 0.5 and 1 m3/s STD 
are used to generate synthetic data (Eq. 7) assuming 
the relative standard error in stream flow 
measurement is approximately 5%. The total of 12 
different combinations of these perturbed rainfall and 
runoff data are used in this study. In addition to the 
proposed sampling method LHS, which is a stratified 
sampling technique is used for comparison. In LHS, 
the range of probable values for each uncertain input 
parameter is divided into ordered segments of equal 
probability. Each parameter is sampled once from 
each of its possible segments. Once the parameters 
are sampled by using above mentioned methodology 
they are again used with original (unperturbed) data to 
evaluate the model. The performances of the points 
sampled by both methods are plotted in 2-dimension 
objective space (NSE & HMLE) for convenience 
(Fig.3). From among all these parameter sets, the 
parameter set in the 95% confidence regions (CR) is 
sampled by selecting only those parameters set for 
which the profile likelihood function (Eq.9) is less 
than 2

,1p αχ − . The number of function evaluations 
needed to sample this parameter set for LHS doubles 
that of MO which uses 106 function evaluations.  
It clearly shows the efficiency of MO compared to 
LHS in sampling parameters near optimal. The plot of 
ensemble parameter set (normalized) in 95% CR 
using MO is shown in Fig. 4. The variance of NSE 
and HMLE for all parameter set in 95% CR is less 
than 0.1%. The parameters in 95% CR with original 
rainfall are used to obtain the range of simulated 
hydrograph which is shown in Fig. 5 and Fig. 6. The 
solid line represents the original observed flow 
whereas faded area is the range of simulated flow. 
Around 73% of the wet season flow and 58% of dry 
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Fig. 4 Sets of normalized parameters lying in 95% confidence 
region using MO. (Each line represents a single set of normalized 
parameter) 
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Fig. 5 Hydrograph range for 95% CR for calibration (1999-2000). 
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Fig. 6 Hydrograph ranges for 95% CR for validation (2001). 
 
Table1 Statistics of posterior distribution of parameters 

 
MEAN STD        CV Para-

meter MO LHS MO LHS MO LHS 

Opt.
Par 

A11 0.21 0.26 0.02 0.09 0.08 0.37 0.23 

A12 0.07 0.09 0.01 0.06 0.20 0.68 0.06 

A13 0.24 0.22 0.02 0.08 0.09 0.37 0.27 

A21 0.18 0.43 0.13 0.30 0.76 0.68 0.16 

A22 0.10 0.17 0.04 0.11 0.40 0.67 0.11 

A31 0.40 0.50 0.28 0.30 0.70 0.60 0.32 

A32 0.15 0.25 0.12 0.24 0.81 0.97 0.16 

A41 0.03 0.14 0.17 0.11 0.52 0.82 0.03 

H11 1.83 2.59 0.82 1.16 0.45 0.40 1.08 

H12 10.43 13.25 2.48 2.95 0.24 0.22 8.87 
H13 34.76 32.22 0.42 1.70 0.01 0.05 34.8 
H21 4.18 3.54 0.79 0.87 0.19 0.25 4.93 

H31 4.54 3.60 0.67 0.89 0.14 0.25 5.00 

T1 0.36 0.50 0.37 0.29 1.02 0.57 0.01 

T2 0.79 0.54 0.27 0.28 0.35 0.51 0.98 



 

season flow are within this range for calibration. For 
validation 78% of wet and 76% of dry season flow are 
with in this range. Table 1 shows the statistics of 
posterior distribution of parameters such as mean, 
STD, coefficient of variation (CV) of samples 
generated using MO and LHS, and optimal parameter 
set (Opt. Par). The Opt. Par is the compromise 
solution obtained by using global criteria which 
minimizes the distance to an ideal vector. The runoff 
and infiltration coefficient of Tank-B and Tank-C 
(A21, A22, A31, and A32) (Table 1) have a higher 
CV, which indicates that these parameters are almost 
unidentified. High CV for T1 indicates that it is 
virtually unidentified. The infiltration coefficient A21 
of Tank-B is found to be highly correlated (correlation 
matrix is not shown here) with A22, A31, A32 and 
H21. In addition, the outlet coefficient of Tank-A and 
Tank-B are also found strongly correlated. Such a 
correlation among different parameters leads to 
numerous identical simulations from a wide range of 
parameter combination.  
    Both methods (MO and LHS) reproduced similar 
first and second moments about origin, where as MO 
approach was efficient in exploring parameters near 
optimal. The higher value of CV for LHS compared to 
MO suggests that the identifiability of parameters can 
be improved using higher order Pareto optimization 
and sampling near optimal. The simulation 
corresponding to posterior mean resulted in 81% NSE 
for calibration and 91% NSE for validation.  
 
4. CONCULSION 
 
    In this paper we have presented a sampling method 
which uses NSGAII with perturbed input and output 
data sets for mapping the posterior distribution of 
parameters of the Tank model near optimal.  
    Pareto front are sensitive to the perturbation factor 
used for perturbing the input and output data. The 
perturbed data can sufficiently explore the parameter 
space near optimal. 
   MO is found to be efficient in exploring the near 
optimal parameter space compared to LHS as MO 
sampled  markedly more parameter sets (~1000) in the 
95%CR compared to LHS (~50). In addition, the 
number of function evaluations required to achieve 
this large number of parameter sets in the 95%CR was 
much less for MO compared to LHS. As this method 
samples more parameter sets near optimal it reduces 
the uncertainty caused by sub-optimal parameters.  
    The posterior distribution of parameters for the 
Tank model at Ukaibashi reveals higher correlation 

between the parameters, which excludes the 
possibility of traditional first order approximation to 
construct posterior distribution. In addition, the higher 
value of CV for many parameters reveals that the 
parameters are poorly identified. The proposed 
method along with being efficient does not use 
surrogate models like Taylor series approximation of 
the response surface to infer uncertainty.  
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