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   This paper deals with the use of Monte Carlo optimization and Artificial Neural Networks (ANNs) for 
deriving monthly reservoir operating rules. The procedure generates synthetic inflow scenarios which are 
used by a deterministic optimization model to find optimal releases. The ensemble of optimal release data is 
related to storage and inflow in order to form allocation rules. Different from the common use of regression 
analysis to define equations relating releases to the other variables, this paper uses ANNs to calculate the 
releases to be implemented at each period. Simulations based on the use of numerical interpolation instead 
of ANNs are used for comparison. The procedure is applied to the multipurpose reservoir that supplies the 
city of Matsuyama in Japan and the results show high correlation with those using optimization under 
perfect forecast. 
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1. INTRODUCTION 
 
   Nowadays the simple use of hydrological records 
to solve problems of reservoir operation has been 
outdated. As the management problems are more and 
more multi-criterial, new techniques and algorithms 
have arisen as powerful tools for modeling several 
problems regarded to water sciences. 
   The first approaches that applied Monte Carlo 
procedures to solve reservoir operating problems 
consisted in defining release policies by least square 
multiple regression. The optimal releases were found 
by an optimization model and then regressed on the 
current reservoir storage and projected inflow. The 
regression equation could be thus used to obtain the 
reservoir releases at any time given the present 
storage and inflow1). However, according to Willis et 

al.2), release-storage-inflow relationships often reveal 
nonlinear trends and therefore simple regression 
analysis are not appropriate. Celeste et al.1) 
considered the nonlinear trends and related these 
variables through numerical interpolation. 
   In a tentative of extracting the most complex 
nonlinear trends that exist in the relationships among 
optimal release, storage and inflow, this study relates 
these variables by using the so-called Artificial 
Neural Networks (ANNs). 
   ANNs appear to extract patterns and detect trends 
that are too complex to be noticed by either humans 
or other computer techniques. Different from 
conventional computer models, which use an 
algorithmic approach (set of instructions in order to 
solve a problem), ANNs process information in a 
similar way the biological nervous system does. The 
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network has a large number of highly interconnected 
processing elements (neurons or nodes) working in 
parallel to solve a specific problem. Each of these 
interconnections has a weight that shows its 
importance. This tool learns through examples 
selected carefully and the most important 
characteristics that make neural networks attractive 
are: good for nonlinear systems, interacting with data 
from the environment, fault tolerance, adaptation to 
circumstances, etc3),4)

. 
   A Monte Carlo procedure using a quadratic 
optimization model and ANNs are applied to derive 
monthly operating rules for the reservoir that 
supplies the city of Matsuyama in Japan. Matsuyama 
suffers with lack of water and consequently there is a 
great necessity of a better management and 
development of the water resources in the region.  
 
 
2. DETERMINISTIC OPTIMIZATION 
    MODEL 
 
   It is assumed that the main objective of the 
operation is to find the allocations of water that best 
satisfy the respective demands without 
compromising the system. Another aim is to keep the 
storage high whenever possible, i.e., every time there 
exists alternative optimal solutions for the releases. 
The objective function of the optimization problem is 
thus written as follows: 
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where t is the time index; N is the operating horizon; 
R(t) is the release during period t; D(t) is the demand 
during period t; S(t) is the reservoir storage at the end 
of time interval t; and Smax is the storage capacity of 
the reservoir. 
   Release and storage at each period are related to 
inflow and spill through the continuity equation: 
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(2) 

 
in which S0 is the initial reservoir storage; I(t) is the 
inflow during time t; and Sp(t) is the spill that 
eventually might occur during time t. 
   The physical limitations of the system define 
intervals which release, storage and spill must belong 
to: 
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where Rmax is the maximum possible release; Sdead is 
the dead storage; and Spmax is a maximum value set to 
the volume of spillage. 
 
 
3. MONTE CARLO PROCEDURE 
 
   The Monte Carlo procedure has the three basic 
steps described below: 

1) Generate M synthetic N-month sequences of 
inflow; 

2) For each inflow realization, find the optimal 
releases for all N months by the deterministic 
optimization model (1)-(5); 

3) Use the ensemble of optimal releases (M × N 
data) to develop operating rules for each month 
of the year. 

The releases obtained by the optimization model, 
R(t), are related to reservoir storage at the end of the 
previous time period, S(t-1), and inflow during the 
current time period, I(t). One relationship (rule) is 
determined for each month of the year. Therefore, 
with information of initial reservoir storage and 
forecasted inflow for the current month, the amount 
of water that should be released can be defined by the 
particular rule. 

The relationships are established by Artificial 
Neural Networks. Thus, the release for any condition 
of storage and inflow can be found by accessing the 
corresponding network. It is to be noticed that no 
equation is necessary and the allocations are 
determined only through the ANNs. 

Like the optimization model (1)-(5) and the Monte 
Carlo procedure, the ANNs for each month were 
constructed in MATLAB. 
 
 
4. ARTIFICIAL NEURAL NETWORK 
    MODEL 
 
   The model scheme is a multilayer feed-forward 
Artificial Neural Network trained by the well-known 
back-propagation algorithm. This model is 
responsible for deriving the monthly reservoir 
operating rules from the optimal results obtained by 
the optimization model.  
 
(1) Architecture 
   The architecture of the network for each month is 
formed by the input layer, one hidden layer and the 
output layer. The input layer is composed by two 
nodes (neurons), which are the forecasted inflow and 
the initial reservoir storage for the current month. 

 



 

The number of neurons in the hidden layer is 
determined based on several factors such as training 
accuracy, computation velocity, etc. Considering 
these factors and by means of a trial-and-error 
procedure, the best training results were achieved 
with 20 neurons in the hidden layer. The amount of 
water to be released is the single neuron of the output 
layer.  
 
(2) Topology 
   The principal importance of a neural network is not 
only the way nodes are implemented but also how 
their interconnections (topology) are made. In this 
study the network topology is constrained to be 
feed-forward, i.e., the connections are allowed from 
the input layer to the hidden layer and from the 
hidden layer to the output layer. Figs. 1 and 2 
illustrate the network topology of this study and the 
details of a neuron, respectively. 
   In this network, each element of the input vector 
(forecasted inflow and initial reservoir storage) is 
connected to each neuron in the hidden layer. The ith 
neuron in the hidden layer has a summation that 
gathers its weighted inputs and bias to form its own 
scalar output or induced local field. Each induced 
local field is submitted to an activation function so 
that they become the inputs of the output layer. The 
unique neuron in the output layer also has a 
summation that gathers its weighted inputs (from the 

hidden layer) and bias to form its induced local field. 
This induced local field is then submitted to the 
neuron activation function and becomes the final 
output or release. 
 
(3) Activation functions 
   Continuous and differential functions are necessary 
for relating inputs and outputs of the ANNs.   
According to Haykin4) the sigmoid function (a 
nonlinear, continuous and differential function) is a 
good activation function for each neuron due to its 
generally accepted behavior. The tan-sigmoid 
function is chosen as the activation function for the 
hidden neurons. For the output layer neuron, a linear 
activation function is used. This happens because the 
tan-sigmoid function can produce outputs only 
between minus one (-1) and plus one (+1) and the 
desired results are outside this range.  
 
(4) Training process 
   The training is performed by the well-known 
back-propagation algorithm which has been 
successfully applied to water resources systems. In 
this approach, the Scaled Conjugate Gradient (SCG) 
method is used for the back-propagation. A detailed 
explanation of the SCG method is provided by 
Moller5). The network training is supervised, i.e., the 
series of weights between the neurons and the bias 
are adjusted through the iterations (epochs) in order 
to fit the series of inputs to another series of known 
outputs. The training also occurs in the batch mode. 
In this mode the weights and biases are updated only 
after the entire training set has been applied to the 
network. After 1000 epochs the training is 
terminated. 
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Fig. 1 Topology of the Artificial Neural Network. 
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Fig. 2 Details of a neuron. 

   
(5) Data adjustment before training 
   Two preprocessings are performed on the data to 
improve the efficiency of the ANNs. 
   The Early Stopping method is applied to the 
original data for improving generalization. This 
technique avoids a problem called overfitting that 
occurs during the neural network training. The 
network seems to be very well trained by showing 
very small errors from the training set data, but when 
new inputs are used the error is large6). 
   To make the ANNs more efficient the Min and Max 
Preprocessing is performed on the network inputs 
and outputs. They are scaled so that they always try 
to fall within a specific range. For this, two new data 
were added in the training data to establish two 
boundary conditions: 1) minimum storage and 
minimum inflow implies no release; 2) maximum 
storage and maximum inflow implies maximum 
release.   
 

 



 

5. APPLICATION AND RESULTS 
 
   The Monte Carlo procedure was applied to the 
Ishitegawa Dam reservoir which supplies the city of 
Matsuyama, located in Ehime Prefecture, Japan. The 
reservoir is also used for irrigation and flood control. 
The maximum reservoir storage (Smax) was assumed 
to be only 8,500,000 m3, different from the actual 
capacity of 12,800,000 m3, because it was desired to 
observe many shortage situations and then compare 
how they are handled by the models. 
  The Monte Carlo process was run under an 
operating horizon of 288 months (24 years). 100 
sequences of synthetic monthly inflow data were 
generated by the non-stationary autoregressive 
model of Thomas-Fiering7). The initial storage was 
set to Smax. The first and last two years of data were 
rejected to avoid problems with boundary conditions. 
This provided 24,000 optimal monthly releases. 
   The data of releases, initial storages and inflows for 
the months of January through December were 
grouped and trained by the ANN model described in 
Section 4. For each month, a trained ANN was 
established and the corresponding values of releases 
were obtained by their use. This process generated 12 
ANNs, one for each month. Figs. 3-5 show the 
scatter graphs of ANN releases (obtained by the 
inflow and storage training data) and training data 
releases for May, July and September, respectively. 
These graphs reveal the good accuracy reached by 
the ANNs. 
   After the definition of the release rules, they were 
applied to a new realization of 10 years of monthly 
inflows and compared to the results obtained from 
the utilization of the deterministic optimization 
model assuming the inflows as perfect forecasts. The 
operation of the system using the perfect-forecast 
situation gives us the “ideal” releases that should be 
employed for all 10 years since it has knowledge of 
all future inflow values. In addition, simulations 
based on numerical interpolation of the data 
ensemble were used for comparison. 
   Fig. 6 shows the results for the period between the 
fourth and eighth years within the 10-year series. Fig. 
7 displays the relationships of the ideal releases 
found by the optimization under perfect forecast 
against the releases obtained by ANNs and numerical 
interpolation. 
   The correlation regarding water allocation between 
the results obtained by the ANN-generated rules and 
optimization under perfect forecast was 95%. The 
correlation of the numerical interpolation with 
optimization was 92%. 
   Examinations of Figs. 6 and 7 show us that the 
simulation using the Monte Carlo-ANN-generated 
rules tries to allocate water in a way very similar to 

the optimization under perfect forecast. This 
information indicates that the results from the 
derived release policies were quite satisfactory given 
the fact they have information only on the previous 
reservoir storage and current inflow whereas the 
optimization model has knowledge of inflows for the 
whole operating horizon and thus better means to 
define superior policies. 
   Comparing the results from the Monte 
Carlo-generated rules using ANNs with the ones 
using numerical interpolation it can be noticed that 
ANNs’ capabilities in adapting to circumstances and 
identifying nonlinear trends produce more reliable 
results than pure data interpolation. 
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Fig. 3 Scatter graph of ANN releases and training data releases  
           for May. 
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Fig. 4 Scatter graph of ANN releases and training data releases 
           for July. 
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Fig. 5 Scatter graph of ANN releases and training data releases 
           for September. 
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Fig. 6 Results for the period between the fourth and eighth years within the 10-year series. 
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Fig. 7 Correlations of releases obtained (a) by optimization under perfect forecast and Monte Carlo-generated rules using ANNs; and  
          (b) by optimization under perfect forecast and Monte Carlo-generated rules using numerical interpolation. 

 
6. CONCLUSIONS 
 
   In this study, Monte Carlo Optimization and 
Artificial Neural Networks were applied to define 
monthly operating rules for a multipurpose reservoir 
in Japan. The procedure solved a number of quadratic 
deterministic optimization models, each of which 
with a given realization of reservoir inflows, and then 
used the generated data and ANNs to construct 
optimal release-storage-inflow relationships for 
every month. These relationships were afterward 
utilized as a basis to simulate new operations and 
showed capable to produce policies relatively 
equivalent to the ones found by optimization alone. 
   The results also suggest that ANNs are more 
reliable than numerical interpolation for finding 
release policies. They revealed that ANNs are very 
good in interacting with data from the environment 
and identifying nonlinear trends. 
   Thus, such procedure may be useful in the 
decision-making process of reservoir operation. 
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