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Implicit Stochastic Optimization is applied to derive monthly reservoir operating rules. The procedure
generates synthetic inflow scenarios which are used by an optimization model to find optimal releases. The
set of release data are related to storage and inflow in order to form allocation rules. In contrast to the
common use of least squares multiple regression to define equations relating releases to the other variables,
this papers uses numerical interpolation to calculate the release to be implemented at each period. The
methodology is applied to a multipurpose reservoir in Japan and the results highly correlate with those

using optimization under perfect forecast.
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1. INTRODUCTION

This paper investigates the determination of
reservoir operating rules by Implicit Stochastic
Optimization (ISO), also known as Monte Carlo
Optimization.

The basic principle of the ISO technique is to use a
deterministic optimization model to find optimal
reservoir releases over an operating horizon
assuming a particular sequence of inputs (reservoir
inflows). The ensemble of optimal releases is then
examined in order to develop a release policy which
can be used for practical operation.

The use of Monte Carlo procedures for finding
reservoir operating policies was first explored by
Young” in a study that utilized dynamic
programming applied to annual operations. The
optimal releases found by the dynamic programming
model were regressed on the current reservoir storage
and projected inflows. The regression equation could
be thus used to obtain the reservoir release at any
time given the present storage and inflow conditions.

Karamouz and Houck® extended Young’s procedure
by adding one extra constraint on the optimization
model specifying that the releases must be within a
given percentage of the release defined by the
previously found operating policy. The releases were
again established by least squares multiple regression
on the current-period inflow and initial storage. Kim
and Heo” used ISO for defining monthly operating
rules for a multipurpose reservoir and used two types
of linear equations for the regression analysis.

Linear and nonlinear regression is commonly used
to find the operating rules from the data obtained by
the deterministic optimization model. However, as
was pointed out by Willis et al.”, examinations of
release-storage-inflow relationships often reveal
highly nonlinear trends and are not appropriate for
simple regression analysis. Willis et al.” devised a
different approach that utilized the probability mass
function of the optimal releases, conditioned on
reservoir storage and inflow.

In this research, such nonlinear trends are also
identified and least squares analysis is hence not
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used. As usual, the optimal releases are related to
storage and inflow but the operations are carried out
by using numerical interpolation to determine the
releases to be implemented. A quadratic optimization
model is employed and the procedure is applied to
derive monthly operating rules for the multipurpose
reservoir that supplies the city of Matsuyama, Japan,
which has suffered in the past with problems of
scarcity of water. Comparisons are performed against
basic simulation techniques and optimization under a
perfect forecast scenario.

2. DETERMINISTIC OPTIMIZATION
MODEL

It is assumed that the main objective of the
operation is to find the allocations of water that best
satisfy  the  respective = demands  without
compromising the system. Another aim is to keep the
storage high whenever possible, i.e., every time there
exists alternative optimal solutions for the releases.
The objective function of the optimization problem
can be thus written as follows:
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where ¢ is the time index; N is the operating horizon;
R(?) is the release during period £; D(¢) is the demand
during period ¢; S(¢) is the reservoir storage at the end
of time interval £; and Sy, is the storage capacity of
the reservoir.

Release and storage at each period are related to
inflow and spill through the mass balance
(continuity) equation for the system,

SN =8, +1(1) = R(1)~ Sp(1)
S(t) =S -1+ ()~ R(t) - Sp(t); t=2,..,N (2)

in which S is the initial reservoir storage; ) is the
inflow during time ¢ and Sp(r) is the spill that
eventually might occur during time ¢.

The physical limitations of the system define
intervals which release, storage and spill must belong
to:
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where R, is the maximum possible release; Sge.q is

the dead storage; and Spmax is a maximum value
attributed to the volume of spillage.

3. MONTE CARLO PROCEDURE AND
DERIVATION OF RULES

The steps of the Monte Carlo procedure are as
follows:

1) Generate M synthetic N-month sequences of

inflow;

2) For each inflow realization, find the optimal
releases for all N months by the deterministic
optimization model (1)-(5);

3) Use the ensemble of optimal releases (M x N
data) to develop operating rules for each month
of the year.

In this research the releases obtained by the
optimization model, R(¢), are related to reservoir
storage at the end of the previous time period, S(t-1),
and the inflow during the current time period, I(?).
One relationship (rule) is determined for each month
of the year. Therefore, with information of initial
reservoir storage and forecasted inflow for the
current month, the amount of water that should be
released can be defined by the particular rule.

The relationships are established by surface graphs
which are fitted to the data via numerical
interpolation. Thus, the release for any condition of
storage and inflow can be found by accessing the
correspondent surface. It is to be noticed that no
equation is necessary and the allocations are
determined only through interpolation.

Like the optimization model (1)-(5) and the ISO
algorithm, the surface fitting procedure was
constructed in MATLAB and it is based on
triangle-based cubic interpolation and Delaunay
triangulation.

4. APPLICATION AND RESULTS

The ISO procedure was applied to the Ishitegawa
Dam reservoir which supplies the city of Matsuyama,
located in Ehime Prefecture, Japan. The reservoir is
also used for irrigation and flood control. The
maximum reservoir storage (Smax) was assumed to be
only 8,500,000 m’, different from the actual capacity
of 12,800,000 m® because it was desired to observe
many shortage situations and then compare how the
models handle them.

The Monte Carlo process was run under an
operating horizon of 288 months (24 years). 100
sequences of synthetic monthly inflow data were
generated by the non-stationary autoregressive
model of Thomas-Fiering®. The initial storage was
set to Spax. The first and last two years of data were
rejected to avoid problems with boundary conditions.
This provided 24,000 optimal monthly releases.

The data of releases, initial storages and inflows for
the months of January through December were
grouped and plotted. A mesh of 100 x 100 nodes
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between the minimum and maximum values of
storage and inflow for each month was established
and the corresponding values of releases were
computed by interpolation generating 12 surfaces,
one for each month. Figs. 1-3 show examples of
surfaces generated for January, April and November,
respectively. For each surface two boundary
conditions were added: minimum storage and
minimum inflow implies no release; and maximum
storage and maximum inflow implies maximum
release. These graphs reveal the high nonlinear
correlations among the variables.

After the definition of the release rules, they were
applied to a new realization of 24 years of monthly
inflows and compared to the results from the
utilization of the deterministic optimization model
assuming the inflows as perfect forecasts. This new
24-year data set is therefore different from the set
used to construct the rules and is utilized in order to
verify the usefulness of such rules. In addition,
simulations based on the so-called Standard Linear
Operating Policy®, or SLOP (Fig. 4), were also used
for comparison.

Figs. 5 and 6 show results for two different sets of
five consecutive years. Comparing the results from
the optimization under perfectly forecasted inflows
with the ones from the SLOP it can be noticed that
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Fig. 1 [SO-generated rule for January.
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Fig. 2 ISO-generated rule for April.

the optimization model tries to mitigate the great
concentrated deficits that happen with the SLOP by
decreasing the releases prior to shortage periods so
that the overall deficit also diminishes. It is also
observed that the simulations wusing the
ISO-generated rules try to allocate water in a way
very similar to the optimization (Fig. 7). In fact, the
correlation coefficients regarding water allocation
between the results obtained by the release rules and
optimization under perfect forecast were 0.85 and
0.90, for both 5-year sequences, respectively. The
correlations of the SLOP with optimization for both
5-year sequences were only 0.73 and 0.66,
respectively.

This shows that the results from the derived release
policies were quite satisfactory given the fact they
have information only on the previous reservoir
storage and current inflow whereas the optimization
model has knowledge of inflows for the whole
operating horizon and thus better means to define
superior policies.

The authors believe that improved release rules and
therefore operating policies may have been found if
more years had been used for the Monte Carlo
procedure. Due to computer storage, however, this
was not attempted in the current research.
Nevertheless, the results were promising.
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Fig. 4 Standard Linear Operating Policy.
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Fig. 5 Results for the first set of five years.
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Fig. 6 Results for the second set of five years.
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Fig. 7 Correlations of releases obtained by optimization and ISO-generated rules for the (a) first and (b) second 5-year set.

5. CONCLUSIONS

In this study, Implicit Stochastic Optimization was
applied to define monthly operating rules for a
multipurpose reservoir. The procedure solved a
number of quadratic deterministic optimization
models each of which with a given realization of
reservoir inflows and then used the generated data to
construct release-storage-inflow relationships for
every month. These relationships were afterward
utilized as a basis to simulate new operations and
showed able to produce policies relatively identical
to the ones found by optimization alone.

Such procedure may be thus useful as screening
tolls in the decision-making process of reservoir
operation.
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