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The Kalman filter theory is coupled with a distributed hydrological model to update spatially
distributed state variables by using several techniques proposed here. To acquire the total water storages
of a basin from discharge observations at the outlet, a Q-S curve is used as an observation equation. After
updating total water storage with the Kalman filter, the ratio method is introduced to reset the distributed
storage amount of a basin, maintaining the spatially distributed pattern. A Monte Carlo simulation is
adopted to predict state variables and error variance propagations. A distributed model coupled with the
Kalman filter theory gives updated simulation results with improved forecasting accuracy.
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1. INTRODUCTION

R.E. Kalman? published his famous paper
describing a recursive solution, which was later
named as the Kalman filter, to discrete data linear
filtering problems. Having potential for broader use,
Kalman filter has been enhanced as Extended
Kalman filter for nonlinear systems. The Kalman
filter is an optimal recursive data processing
algorithm to estimate the state variables for
minimizing the error statistically. It combines all
available observation data, plus prior knowledge
about the system and measuring devices, to produce
an estimate of the desired variables in such a
manner that the error is minimized statistically (e.g.
Maybeck?). A more detailed description about
Kalman filter theory can be found at Jazwinski® and
a good discussion of the filter with several
application cases to the hydrological system is given
by Bras and Rodriguez-Ttulbe®.

Since Hino% initially adapted the Kalman filter
theory to a hydrological system, numerous studies
have been carried out to use the filter theory in the
field of hydrology. Takaso er al® described
real-time flood forecasting based on a stochastic

state-space formulation of rainfall-runoff systems
coupled with the Kalman filtering-prediction theory
and its application. In the research, the storage
function method was used to couple with the filter
taking the storage amounts of sub-basins as the state
vector. Lee and Singh” showed upgraded simulation
results of the tank model when the state vector of
the Kalman filter is composed of the model’s
parameters. The storage function method and the
tank model are often used lumped models in Japan,
Korea and many other countries for flood
forecasting and watershed modeling. While the
Kalman filter has been applied to many lumped
models for better simulation or more accurate
forecasting, it has hardly ever been applied to
distributed hydrological models. One of the main
reasons is that unlike lumped models, it is
complicated to formulate the Kalman filter
algorithm in the system structures of distributed
models in most cases. A large number of state
variables based on a fine grid cell hydrologic system
also make it harder to apply the Kalman filter.

In this research, to avoid the computational
burden for updating each state variable, several
techniques are introduced for applying the Kalman
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filter into a distributed hydrological model. Q-S
curve which express the relationship between the
discharge at the outlet and the total storage amount
is determined under steady state assumption on a
study basin. The Q-S curve is used for the
observation equation of Kalman filter to update the
simulated total storage amount of the basin with
discharge observation. The spatially distributed
storage amount in the model is reset by multiplying
by ratio of the updated total storage amount to the
simulated storage amount. This technique which is
named as the ratio method is adopted to consider the
spatial pattern of the storage amount in every
grid-cell of a distributed hydrological system. For
the prediction algorithm, Monte Carlo simulation is
carried out to estimate state variable and error
variance propagation of the next updating step. The
methodology for deciding the system error variance
is also discussed.

2. COUPLING OF CDRMV3 WITH
KALMAN FILTER

The study mainly focuses on a coupling method
of the Kalman filter with the Cell based Distributed
Runoff Model Version 3 8 (CDRMV3, http://fmd.
dpri.kyoto-u.ac.jp/~flood/product/cellModel/cellMo
del.html). The state variable to be updated is the
total storage amount in a basin, and its spatial
distribution is calculated using water depth at all
computational nodes in the model. The storage
amount is easily calculated by multiplying the water
depths by the cell area. The parameters of the
CDRMV3 are calibrated before applying the
Kalman filter and do not change when state
variables are updated. Uncertainties caused by
systems and observations are considered in the error
variance of the filter, though uncertainty caused by
rainfall forecasting is not accounted for in this
study. Radar observed rainfall data which is
calibrated by ground gauges are used as forecast
rainfall data.

(1) Brief model description of CDRMV3
CDRMV3 is a one dimensional physically based
distributed hydrologic model developed at Flood
Disaster Research Laboratory of Disaster Prevention
Research Institute, Kyoto University®. The model
solves the Kinematic wave equation using Lax
Wendroff scheme on every node in a cell. Discharge
and water depth propagate to the next cell according
to a predefined routine order determined in
accordance with DEM data. An advantage of the
CDRMV3 is that the stage-discharge relationship of
each cell reflects the topographic and physical
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Fig.1 Relationship between unit width discharge and
water depth in the CDRMV3.

Table 1 Flood event used in this study.
EVENT Flood Term MaxDischarge
Event 979 | Sep 15~19, 1997 1203.0 m’/s
Event 996 | Jun 24~Jul 3, 1999 210.0m’/s
Event 998 Aug 1~7, 1999 489.0 m’/s
Event 999 | Sep 22~27, 1999 644.0 m’/s

characteristics of its own cell. Specified stage-
discharge relationship, which incorporates saturated
and unsaturated flow mechanism, is included in
each cell». Because of the variable slope and
roughness coefficient, each cell has its own
relationship.

The stage-discharge relationship is expressed by
three equations corresponding to the water levels
divided into three layers (see Figure 1). When the
water depth 4 is lower than the depth of unsaturated
layer (0<h<d,), flow is described by Darcy’s law
with a degree of saturation, (#/d.)’ and velocity v.. If
the 4 increases (d. <h<d,), flow from the saturated
layer is considered with a different velocity v, of
saturated layer d;. The velocity of subsurface flow v,
and v, are calculated by multiplying hydraulic
conductivity k, and k. by slope i. After the water
depth is greater than the soil layer (d; <h), overland
flow is added by using the Manning’s equation.
According to this mechanism, the equations
between discharge per unit width ¢ and water depth
h are formulated. More detail on the specified state-
discharge relationship and the model structure can
be found in Tachikawa et al.9.

The model is applied to the Kamishiiba basin
(211km®) of Kyushu area. Four different flood types
of the basin are selected for this study. Flood period
and maximum discharge of the four events are
shown in Table 1.

(2) Measurement Update Algorithm
In the measurement update algorithm of the
Kalman filter, an observation equation (Eq. 1)
which specifies a relationship between observed
data and state values is necessary. The observation
vector y, can be described as a linear combination of
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a state vector x;. The observations are affected by
observation noise w; which has a covariance matrix
R,. The mxn matrix H relates the state vector to the
observation. In the measurement update algorithm,
the state vector )?(k’k—l) and error covariance
P(k|k-1) which are estimated through system at time
step k-1, are updated at time step k£ with use of the
nxm matrix K;. The matrix K, which is called the
Kalman gain is chosen to minimize the updated
error covariance P(k|k). In the algorithm, “~’

indicates estimated value and ‘7 indicates the
transpose of a matrix.

Observation equation

Yo=Hx, +w,; w,~N(@,R,) (1)

Measurement update algorithm

X(kk) = 2(klk D)+ K, (v, - H 5[k -1)) ()
P(klk) = P(klk—1)— K H, P(klk —1) (3)
K, =P(klk-1)H, (H P(kk-1H, +R)™ (4)

The difference, y, —H, X(klk—1) , which is
called the residual or innovation reflects the
discrepancy between the estimated observation
H kfc(k‘k—l) and the actual observation y,. If the
total storage amount to be updated is measured
directly, the residuals are easily obtained. However
observed quantities are discharge or river stage
rather than distributed storage amount.

In the CDRMV3, the relationship between the
discharge at the outlet and the total amount of
storage has a loop shape as shown in Figure 2,
whose shapes are different for each flood event.
However, it is still possible to get a relationship in a
specific case like a steady state condition. After
reaching the steady state condition with a given
constant rainfall on the subject basin, the total
storage amount that corresponds to the given rainfall
intensity can be acquired by multiplying cell area by
water depths of each cell and sum up these entire
amounts. The cell size in this study is 250mx250m.
Assuming a steady state condition, the Q-S curve
that is used for the observation equation is obtained
as shown in Figure 2. Even though states during a
runoff simulation are not steady, the difference
between the two curves from the steady state and
unsteady state seems acceptable.

The reason for needing the observation equation
is to get the conversion matrix H in the
measurement update algorithm. The matrix relates
total storage amount and observed discharge.
More specifically, it stands for the gradient of the
Q-S curve in accordance with simulation results at
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Fig.2 Two different curves between steady and unsteady state.

updating time step. As only one observation is
available in the Kamishiiba basin, H is a scalar
value in this study.

In processing the measurement update algorithm,
a couple of problems exist to be considered. These
are basically caused by the steady state assumption
when making use of the Q-S curve. Because the
relationship is determined under the steady state
assumption, there is always some departure towards
the unsteady state, even if it is small.

At first, two different H values could be given at
each time step as seen in the Figure 2; one is from
the simulated discharge and the other is from the
simulated storage amount. However, through
several tests, it is checked that those two different H
values do not make a recognizable difference to the
filtered results. For this reason, an arithmetic
average of those two H values is used in the
application of the CDRMV3.

Another problem occurs while getting residual in
the measurement update algorithm. According to the
conventional equation of the Kalman filter, the
residual is calculated by the use of the observation
equation. On the other hand, the residual also can be
calculated directly from the difference between
observed discharge and simulated discharge. When
the filtered results are examined, the residual from
directly using simulated discharge gives much better
filtered results. Thus, the directly calculated residual
is used rather than conventional form using the H
value from the Q-S curve.

After updating the total storage amount through
the measurement update algorithm, the updated
storage amount should be distributed to each cell in
a subject basin. One efficient way to update each
cell’s storage amount is using a specific ratio
calculated from the updated total storage amount
and the simulated storage amount. The calculated
ratio is applied to all water depths of each cell in the
model, which has the same spatial distribution
pattern with the simulation result before updating as
shown in Figure 3. This method which is named as
the ratio method, offers efficient and effective
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Fig.3 Concept of the ratio method

updating skill of state variables considering its
spatial distribution pattern!®,

(3) Time update algorithm

The Kalman filter is an algorithm to optimize the
state vector x of a discrete time controlled process
which is governed by a linear difference equation.
The nxn matrix F in the system equation (Eq. 5)
relates the state variables at current time step & to
the state at next step k+/. The system is
continuously affected by system noise, v, with
covariance matrix (J,. The matrix B, relates optional
control input to the state x. The time update
algorithm is for projecting forward the current state
and error covariance to obtain the estimation for the
next time step. The estimated error covariance P is a
nxn matrix.

System equation
X = FiX + B +v 3 v, ~N(0,0,) ©)

Time update algorithm
X(k +1k) = F,%(k[k) + B, (6)
P(k+1jk) = F P(k[k)F, +0, (7

In the CDRMV3, a complicated relation exists
between the present state variables and the next state
variables; in this case the storage amount and its
spatial distribution. Each cell responds inter-
dependently to the next step’s state variable
according to its present state variable and other
input data such as rainfall. So it is impractical to
formulate the system matrix Fj, which is essential to
update the error variance P(k+1|k). Rather than use
the conventional concept of the Kalman filter theory
as shown in the schematic drawing (a) in Figure 4,
the Monte Carlo simulation technique (drawing (b)
in Figure 4) is applied to solve the problem.

By the concept of the Monte Carlo simulation,
lots of random variables are generated at time step
k; one hundred of total storage values were
generated in this study. Each random variable is
defined by any possible storage amount within a
range of probability distribution, N( X(klk), av);
where, a,=P(k|k)"".

Q.
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-

Fig.4 Two estimation concepts of time update algorithm.

The ratio method is used again at this point to
reset the water stage at each cell by multiplying by
the ratio of generated storage amount to the mean
storage amount X(klk) . After a simulation
repeatedly calculates multiple input sets until the
next update time step k+/, another probability
distribution, N i(k+llk),ak+1), is calculated from
the simulated results. Now, the estimated state
X(k+1lk) is the mean value of the probability
distribution and the error variance (oy,,)” is regarded
as FkP(klk)FkT. Adding the system error variance O
completes the error variance P(k+1|k) at time step
k+1. Estimated error variance F,P(k|k)F,' means
propagation of the error variance P(k|k) through the
simulation, and (), stands for a new generated or
added system variance during simulation from time
step k to the next time step k+/. The newly added
system variance is caused by system structure or
new input data such as rainfall. The methodology to
determine the system error variance, Q, is discussed
in the following section.

(4) Setting Observation Noise and System Noise

One of the difficulties in applying the Kalman
filter is determining the error covariance of the
system and the observation. Although the Kalman
filter provides an algorithm for better forecasting by
updating the state estimates, its success depends on
determination of the error covariance which requires
proper judgment by the hydrologist. However, it is
impossible to get the true value of the hydrological
system because the system is based on the nature
which varies in time and space. The only action we
can take is to try to get a reasonable error covariance
with the least assumptions.

a) Observation Noise

The basic assumption of the Kalman filter is that
system and observation noises are white and
Gaussian. Thus, at any point in time, the noise value
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is not correlated in time and the probability density
curve of noise takes on the shape of a normal
bell-shape. This assumption can be justified
physically by the fact that a system or observation
noise is typically caused by a number of small
sourcesd. It is reasonable to see the observation
noise from this point of view. The observed data
used in this study are acquired from the Kamishiiba
dam inflow data. The inflow data are calculated
mainly by converting the dam reservoir stage into
discharge with considering the release from the dam
for various purposes. Since more research is needed
to determine the observation noise reasonably,
assumed observation error variance is used in this
paper. The assumed error variance is mentioned in
each filtered result.

b) System Noise

If observed data are assumed to be true values,
biases between simulation results and the observed
data could be regarded as system noise. When the
first and second momentums of the biases are
checked, the mean values are around zero and the
standard deviations are around 30m’/s. Also it can
be checked that the biases distribute as a normal
probability distribution. Because the mean is around
zero, the RMSE given by Equation 8 is almost same
as the standard deviation of the biases as seen in the
Table 2. Following this analysis, the RMSE is
regarded as a standard deviation of the system noise
wy in terms of discharge.

i (Qs,z - Qo,, )2

i=1

RMSE = (8)
n

RMSE : Root Mean Square Error

Qs : simulated discharge

Qo : observed discharge

where,

Table 2 Statistical values of simulation results. (unit: m*/s)

EVENT MEAN StDev RMSE
Event 979 -2.22 36.48 33.64
Event 996 -10.80 22.93 21.15
Event 998 3.32 22.11 20.85
Event 999 -1.02 25.70 23.73

Then, the discharge RMSE is converted to the
error variance of the total storage amount. System
noise in terms of discharge can be translated to the
noise in terms of storage amount by using the Q-S
curve. Three discharges at a specific time step, O,
OtRMSE and Q,—RMSE, will match on the Q-S
curve with three different storage amounts, S, Sup;
and Sdn;. Using the differences of storage amount,
Supy, Sy and S;-Sdny, the system error variance (O
can be calculated as shown in Equation 9.

O, =|(Sup, =S )x (S, —Sdn,)| (9

where, Ok : system error variance at time step £

Supy, Sy, Sdny : converted storage amounts

There is one important checking point about the
Gaussian assumption of the Kalman filter for a
nonlinear system. Because the relationship between
discharge and storage amount is nonlinear, if the
probability distribution of storage amount has a
Gaussian distribution, the distribution of discharge
will not follow the normal distribution, and vice
versa. The distributions of the variables are no
longer normal after undergoing their respective
nonlinear transformations. However, this nonlinear
effect on probability distribution is not significant in
this study. The Q-S curve could be regarded as a
linear line in local part.

3. ANALYSIS OF RESULTS

The Kalman filter is successfully coupled to the
distributed hydrological model. Figure 5 and Figure
6 show two kinds of filtered results each by setting a
different error variance to check the effectiveness of
filtering results. The label “0e30” means 30m’/s of
standard deviation as the observation noise and
“se30” means 30m’/s of standard deviation as the
system noise, “se0)” means no system noise, and
“0e0” stands for no observation noise which means
the observed data are regarded as true values.

When the hydrographs from the case “se0:0e30”
are examined, the filtered results are exactly the
same as the results from the offline simulation. It is
a reasonable result because the system is regarded as
a perfect one to do a simulation. If there is no
system error, which means that the system produces
the true wvalue, the filtered results and offline
simulation results should match exactly.

On the other hand, the case “se30:0e0” shows
that the filtered results trace the observed data. But,
there are some discrepancies on the hydrograph
rather than exactly match to the observed data.
Two reasons are considered to explain these
discrepancies. The first one is because of the steady
state assumption of the Q-S curve. As shown
already in the Figure 2, the difference of Q-S curve
to the loop-shaped curve under unsteady condition
make different gradient value H, and it affects to the
observation update algorithm. The other reason
concerns updating frequency. Every observation
update is given at every an hour while the
calculation time step is ten minutes. Five simulation
results between nearest observation update make its
own hydrograph. When observation updates are
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Table 3 The RMSE of prediction results. (unit: m%/s)

EVENT 1hr ahead | 6hr ahead | 12hr ahead
Event 979 37.18 39.64 37.28
Event 996 11.42 17.24 20.14
Event 998 16.45 21.93 22.17
Event 999 28.00 34.72 27.85

carried at every calculation step, the discrepancies
are decreased a lot.

To check the prediction accuracy after coupling
with the Kalman filter, 1hr, 6hr and 12hr prediction
results are compared. Table 3 shows the RMSE
from the prediction results when the system noise
and observation noise are equally set as 30m’/s. As
expected, prediction for short lead times shows
higher accuracy. It is interesting that even prediction
of 12hr ahead gives quite good accuracy compared
to the short lead time forecasting. One main reason
for this is the use of recorded rainfall data.
Simulation and prediction are carried out under an
assumption that we know exactly the expected
rainfall.

4. CONCLUSION

The Kalman filter was successfully coupled with
the distributed hydrological model, CDRMV3, to
update the state variables. Rather than formulate an
impractical algorithm to apply the filter, several
techniques, such as the Q-S curve, ratio method and
Monte Carlo simulation are adopted. Total storage
amount from the Q-S curve is used as the state
variable. The ratio method is used for setting each
water stage of every cell in the model by specific
ratio. For the prediction algorithm, Monte Carlo
simulation is adopted to propagate state variable and
error variance to the next step. The CDRMV3 using
Kalman filter yields better results than the
CDRMV3 without the filter in terms of RMSE and
computed hydrographs.

Q 24 48 72 96 120 t44 ° 188 ° 192 216 240 - 264

1%
&
a

Rainfall (mm/hr
L]
o o o
‘

observed
oel :5e30 —— -
0e30 :sel

o
a
o

ge (ems)
ar [=]
=] o

o
=]

Dischar

[t} 24 48 72 96 120 144 168 192 216 240 264
Time (hr}

Fig.6 Filtered results of Event 996

Research to overcome the steady state
assumption on the Q-S curve is needed to improve
the filtered results. Methodologies to include the
uncertainty of rainfall forecasting in the system
error variance and to use a multi-observation data
set is a further research issue.
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