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A three-dimensional Large Eddy Simulation (LES) model investigating the motion of turbulent
axisymmetrical as well as line thermals is presented. The model governing equations are spatially filtered
3-dimensional Navier-Stokes equations and Mass Transport equation. Space derivatives are calculated by
Compact Finite Difference Scheme (CFDS) and time derivatives are calculated using Crank-Nicholson
method. The turbulence generated is taken care of by eddy viscosity calculated using the modified
Smagorinsky model, which includes buoyancy term. The comparison of simulated thermal characteristics
like shape, size, buoyancy and mass center velocity for axisymmetrical as well as line thermals, with
reported experimental results are found in reasonably good agreement. The behavior of thermal with
different length to width ratio (£ ) of initial conditions, is also investigated using this model. It is observed
that if the value of { is more than 5, the thermal’s behavior is closer to a line thermal of infinite length.
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1. INTRODUCTION

Study of thermals is of great importance in many
areas like dumping of dredged materials into the sea,
artificial land reclamation, disposal of industrial
wastes, water quality studies and study of
assessment of impact of such projects on marine
environment etc. Such practices raise not only water
quality concerns associated with potential loss of
contaminants to the water column during disposal,
but also engineering challenge related to the ability
of barges or scows to accurately place dredged and
capping materials within the targeted area. However,
the process of the settling of dumped particles and
their spreading on the sea bottom, is not yet fully
understood for a through evaluation of the impact of
such projects on the environment.

Many studies on thermals are reported. For
instance, Baines and Hopfinger” conducted
experiments on axisymmetrical conservative heavy
thermals and showed that the effect of large density
is confined to the region near the source.
Maxworthy? conducted experiments on
conservative axisymmetrical thermals produced by
forcing a mass of fluid through an orifice. They

estimated the drag coefficient to be in the range of
0.09 £ 0.01 by taking slope of non-dimensional
velocity versus depth data. Ruggaber” conducted a
series of experiments on  axisymmetrical
non-conservative thermals and showed that the
wake formation is highly dependent on the way of
releasing the thermal fluid. Buhler and
Papantoniou” proposed a relationship for the growth
rate and velocity of suspension axisymmetrical
thermals, which is applicable in, swarm phase also.
Noh and Fernando® conducted experiments on 2-D
particle thermals and developed a relationship for
the critical depth at which the thermal transits into
swarm phase.

Sanchez et el.? conducted experiments and
performed simulations on conservative
axisymmetrical thermals. But their simulation
underestimated the observed thermal velocity at
early stages and overestimated it in later stages and
vice-versa in case of thermal half width. Li and
Zang” developed a 3-D numerical model using
conservative characteristic based scheme. They
applied their model to axisymmetrical and line
thermals and produced reasonable results. Li® used
a 3-D model based on NS equations and mass
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transport equations to simulate axisymmetrical
non-conservative thermals. The author used Prandtl
mixing length model to calculated eddy viscosity.
The model did not simulate the double peak
distributions  for large particles (0.6-1.18mm).
Akiyama et el.” and Ying et el.'” investigated
motion of 2-D non-conservative and conservative
thermals from falling to spreading, experimentally
as well as numerically with and without imposing a
turbidity fence.

In this study, we have developed a 3-D
numerical model for simulation of thermals using
LES. The governing equations are solved using
Compact Finite Difference Scheme CFDS') along
with Crank-Nicholson fractional step method. The
model is verified through reported experimental
data for axisymmetrical”® thermals as well as
line”'” thermals. In both kinds of thermals, the
results of the model are in reasonably good
agreement with the experiments.

The behavior of thermal with different length to
width ratio of initial conditions is also investigated
using this model. This ratio £ is an important
parameter in designing the dimensions of the hopper
used for dumping the materials into sea. It is
observed from simulations that if the value of € is
more than 5, the thermal’s behavior is closer to a
line thermal of infinite length.

2. MODEL DEVELOPMENT

In the development of the model, several
assumptions are made. The particle phase is treated
as fluid phase and the drift velocity between fluid
and particles is assumed to be the settling velocity
of the particles. The second assumption is that the
Boussinesq assumptions are assumed to be valid.

(1) Governing equations

The governing equations are three-dimensional,
incompressible Navier-Stokes equations and Mass
Transport equations. Following the classical LES
approach, the flow variables are decomposed into
large-scale, resolvable and subgrid-scale
non-resolvable parts using grid filtering.

oU
L =0 1
o )
ou, .oy, 1 oP 98U,
T ) T I  SVA
'R ox, P, Ox,  Ox;
— )
2 )
ox, Pa
ac oC 0| —
o (U )ax ox, (—u/c ) 3)

3

where U, = mean velocity component in the x;
direction, P = pressure in excess of the hydrostatic

pressure at reference ambient density p,,
p=thermal fluid density, Ap= density excess
(=p-p.) v = kinematic viscosity, g;= acceleration

due to gravity in the x; direction, u,= non-resolved

component of velocity, C= volumetric concentration
of particles or dense fluid, D = diffusivity (v8.), S,

= Schmidt number, ¢ = non-resolved component of
concentration; ﬁ = sub grid correlation terms
between non-resolved components of velocities due
to the grid-filtering, —uTc—' = subgrid correlation

terms between non-resolved velocity component
and non resolved concentration component, V; =
settling velocity of a particle in the x; direction and
is computed by Rubey’s equation given as;

2 2
v = fsgd 2+36v3_ 36\/3 )
3 sgd sg.d

where d = particle diameter, v = kinematic viscosity
and s = submerged specific density of particle.
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where v, = sub grid scale eddy viscosity; k& =
turbulent kinetic energy; &= Kronecker delta
function. The last term in Eq. (5) represents the
normal stresses and can be absorbed in the pressure
terms of the momentum equations.

The sub grid scale eddy viscosity v, can be
expressed by assuming that the sub-grid turbulent
production includes a buoyancy term'®. Therefore,

& OAp 112
v, =(Csa) ( [s] - . ) (6)

1

can be expressed as;

where A= filter width, Cs = Smagorinsky constant
and Sc, = sub grid turbulent Schmidt number. The

magnitude of large-scale strain is given by

5| =(25,5,)" Q)
e

The correlation term in Eq. (3) is generally
expressed as;

v, oC

-ucl =t — 9)
Sc, ox,

Applying operator-splitting, Eq. (2) can be written

as an advection-diffusion equation
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The pressure is computed by the Poisson equation,
derived from algebraic manipulations of Eqgs. (1)
and (11) and is given below;

VPP (g, NVAp+p NU)=0 (12)
(2) Solution methodology

The equations to be solved are Egs. (3), (10),
(11) and (12). Solving Eq.10 by CFDS scheme, u, v
and w are computed at intermediate time step
(n+1/2), which is without inclusion of pressure
terms. Using these velocities, Poisson equation Eq.
(12) is solved for pressure using SOR method,
calculating P for next time step. With the velocity
and pressure known as above, Eq. (11) is solved for
velocities at the next time level. Mass transport
equation Eq. (3) is solved to update excess density.
This process is repeated for reaching to next time
level. The space derivatives are solved by Compact
Finite Difference Scheme'” (CFDS) and time
derivatives are calculated using Crank-Nicholson
fractional step method with CFDS. The imposed
boundary conditions for velocity, pressure and
concentration are

V.=0, V,=0 (Bottom boundary)
. =0, v, =0 (Side boundaries)
on on

ov: =0, V =0 (Top boundary)
on

or =0, o =0 (All boundary)
on on

where T and n denotes direction tangential and
perpendicular to boundary respectively.

3. AXISYMMETRICAL THERMAL

The detail of thermal is schematically shown in
Fig.1 in which Fig.1a is depicting axisymmetrical
thermal and Fig.1b depicts line thermal. Various
parameters of thermal are 4, = initial volume; W, =
initial total effective gravity force (=4, Xg X&), €
= initial relative density difference (=(pp—p,)/ps); H
= half width of thermal; ¥ = mass center velocity of
thermal; # = total depth of ambient fluid; B =
average effective gravity force and is calculated as
(=WyA), A = volume of thermal at any distance z
from origin; and x, y, z are directional ordinates
respectively. In the following section, experimental

Table 1 Experimental condition for thermals.

g | Thermal |3 d €o Wo
S | fluid cm cm’/sec
Ar | Dyed 0.007 | 3432
Brine
A2 | Glass 1.6 | 0.0264 | 0.06 | 235200
Bead
A3 Silt . 1.6 0.0010 | 0.167 | 23520.0
Solution
L1 Saline | eemem | ceemee- 0.036 | 17640.0
Glass
L2 2.47 0.0044 | 0.194 | 95000.0
Bead
\V
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Fig. 1 Schematic diagram showing motion of thermals.
(a: axisymmetrical thermal, b: line thermal)

conditions, computational conditions and results of
the simulations are discussed.

(1) Experimental Conditions

Experimental conditions are presented in Table
1. Three cases of axisymmetrical thermal tabulated
as Al, A2 and A3 respectively, and two cases of
line thermal tabulated as L1 and L2, are simulated
using the above-developed model. In case of
conservative thermal Al, we have taken
experimental data reported by Sanchez et el.” where
initial volume A4, was 10 cm’. In case of
non-conservative thermal cases A2 and A3, we have
taken data from experiments conducted by
Ruggaber® where 4, was 55 cm’.

(2) Computational Conditions

Free water surface is treated as horizontal rigid
boundary. The grid size for all cases is 0.0lmX
0.0lmX0.01m. Time step is 0.0025sec. The value
of Smagorinsky Constant C, is 0.21 and sub grid
turbulent Schmidt number S, is 0.5. The
computational domain for Al is a grid of 31 X31X
31 points and for A2 and A3 cases 61X 81 X61.
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Fig.2 Comparison of experimental photographs and
simulated axisymmetrical thermal for case Al.

(3) Results and Discussion

For qualitative analysis, the relative excess
density € contours along with velocity vectors for
case Al at 3, 6 and 9 seconds are compared with
reported experimental photographs® and are shown
in Fig.2. The Half width /7 and position of thermal
are in satisfactory agreement with that of
experiments.

For quantitative analysis, non-dimensionalised
half width H', average effective gravity force B” and
mass center velocity V" are presented as function of
non-dimensionalised falling distance z* in Figs.
3~5. Non-dimensional quantities are defined as z° =
dAC,H = HIAR, vi=vww/?14") B =
B/(WyAy. Fig. 3 shows comparison of simulated
and experimental H" as a function of z". Half width
for cases A1, A2 where the relative excess density €
is much lower are found in reasonable agreement
with experiments. But in case of A3, where g is
higher than that of above two cases, simulated ' is
underestimated than that of experiments. This may
be due to weak entrainment of ambient fluid into the
thermal fluid as ¢ is higher at the time of release. So
the expansion of thermal is poor and falls with a
higher velocity. In Fig.4 the comparison of
simulated and experimental 7" as function of z" for
case Al, A2, and A3 is presented. The simulated
values of 7" for cases Al and A2 are in reasonable
agreement with the experiments. In case of A3, the
velocity is slightly overestimated than that of
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Fig.5 B” as a function of "

experiments due to above said reason. Fig. 5 shows
the simulated B” as a function of z". B is found to be
decaying exponentially with z". Simulated B could
not be compared with experimental data as in the
reported experiments”® there was no experimental
data corresponding to B”.

4. LINE THERMAL

A line thermal is a special case of 3D thermal
where thermal fluid is released from a line source
parallel to the complete length of the flume.

(1) Experimental and computational conditions
The experimental conditions for line thermal are
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Fig.6 Comparison of experimental photographs and
simulated line thermals.

tabulated in Table 1. One case of conservative
thermal L1 and one case of non-conservative
thermal L2 is simulated. We have taken
experimental data reported by Ying et el.'” for
conservative thermals and Akiyama et el.” for
non-conservative thermal. A, was taken 500 cm’ for
both the cases of line thermal. The computational
domain for all cases of line thermal is 61 X 85X 10.
Other computational conditions are same as in
section 3(2).

(2) Result and Discussion

For qualitative analysis, simulated relative
excess density difference € contours are compared
with experimental photographs at different time
intervals as shown in Fig. 6. The shape of the
simulated thermal is like an ellipse as also seen in
the photographs. A strong internal circulating
motion indicated by velocity vectors is also seen in
the simulated thermals. The internal circulating
motion is stronger than in axisymmetrical thermal
(Fig. 2). The shape, size and position of the
simulated and experimental thermal are in good
agreement with that of the experimental
photographs.

For quantitative analy51s H', B" and V" are
plotted as a function of z for both cases. In Fig.7 H*
is shown as a function of z* and for both cases the
computed results are in reasonably good agreement
with the experimental values. The slope of H is
higher than that in case of axisymmetrical thermals
(Fig. 3). This indicates that the rate of ambient fluid
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entrainment is more in line thermals than in

axisymmetrical thermal. The comparison of V©asa
function of z~ with experimental values is shown in
Fig. 8. The reproduction of Veloc1ty for all cases is
satisfactory. The simulated B" as a function of z 1s
compared with experimental values in Fig. 9 and B’
is reproduced up to a considerable extent.

This model is used to simulate the behavior of
thermals with different length « to width £ ratio

(=a/p), of initial conditions as shown in Fig. 10. For

all cases of ¢ (i.e.=1,3,5), initial W, per unit length
and g were taken same as that of conservative
axisymmetrical thermal case Al listed in Table 1.
Simulated thermal with different ¢ is compared
with simulated thermal of infinite length (i.e.{= ©©)

- 1181 -



14 [ Ving et ol (1999)
2| 2 ke <
o =3 1
10 o £=1 sk \
X ST A !
H g .
6 - 0" \
2 : - L g
a B T
O — S - 1. e —— S
0 5 z 10 15

Fig.10 H as a function of z°

and results of 2D thermal theory'®. Quantitative
analysis of thermal parameters H, V', B as a
function of z” is presented in Figs 10~12 where line
indicates the results of 2D thermal theory'®. As
shown in Fig.10, the slope of the H of the thermal
increases as ¢ increases and tends to be same as that
of a 2D thermal. In Fig.11 V" as function of z" is
presented. V" decreases as ¢ increases. In case of B'
as presented in Fig. 12, the curve becomes closer to
2D thermal as the value of ¢ approaches to 5.

5. CONCLUSIONS

A 3-D numerical model is developed for the
simulation of thermals using LES. Eddy viscosity is
calculated using modified Smagorinsky model and
value of C, and S, were taken as 0.21 and 0.5.
Axisymmetrical and line thermals were simulated
and compared with reported experimental data. The
simulated results are found in reasonably good
agreement with experiments. The behavior of
thermal with different initial width to length ratio £
is also investigated using this model.

AKNOWLEDGEMENT:  This study was
supported by the Grant-in-Aid for Science Research
of the Ministry of Education and Culture, Japan
under the Grant B (2), No. 1255149,

REFERENCES

1) Baines, W.D. and Hopfinger, E.J.: Thermals with large
density difference, Journal of Atmospheric Environment,
Vol.18, No. 6,pp.1051-1057,1984.

2) Maxworthy, T.: Turbulent vortex rings, J. Fluid Mech.,
Vol.64, part 2, pp.227-239, 1974.

3) Ruggaber, G.J.: Dynamics of particle clouds related to
open-water sediment disposal, Ph.D. thesis, Massachusetts
Institute of Technology, USA, 2000.

4) Buhler, J. and Papantoniou, D. A.; Swarms of coarse particle
falling through a fluid, Environmental Hydraulics (Lee &
Cheung (eds)), Balkerma, Rotterdam, pp. 137-140,1991.

12 Ying et el. (1999) |
[ Q: oo
1 [ | a £=5
| e E=3
08 ra. e &=t |
5 o Lot
v !
ae0_ 0O
06 -  seof Cooofoaogg g
| 9 @go 9009000, 0%09050%0:'1:
04 }‘ éAA £00.0n Mdary s tappana sean &
: )
02 ot
0 B
0 5 ;10 15
Fig.11 V" as a function of z°
12 S —Ymeta (1999)|
1 i ‘ o (=00 :
a (=5 ’
\ o £=3 \
08 | o 6=l |
* ! 7 T vt
B !
0.6 ‘
I
04 i
02 |
1
0 |
0 5 zZ 10 15

Fig.12 B” as a function of 2’

5) Noh, Y. and Fernando, H.J.S.: The transition in the
sedimentation pattern of a particle cloud, Phys. Fluid, AS
(12), pp.3049-3055, 1993.

6) Sanchez, O., Raymond, D.J., Libersky, L. and Petschek,
A.G.: The development of thermals from rest, Journal of
Atmospheric Sciences, Vol.46, No.14, pp.2280-2292, 1989.

7) Li,C.W. and Zang, F.: Three-dimensional simulation of
thermals using a split-operator scheme, I[nternational
Journal of Numerical Methods in Heat and Fluid Flow,
Vol.6, No.2, pp.23-35, 1996.

8) Li, C.W.: Convection of particle thermals, Journal of Hyd.
Research, IAHR, Vol.35, No.3, pp.363-376, 1997.

9) Akiyama, J., Jha, A.K., Ying, X. and Ura, M.: Numerical
study of 2-D particle clouds and effect of turbidity fences,
J. of Hydroscience and Hydraulic Eng., Vol. 19, No.l,
pp.141-152, May, 2001.

10) Ying, X., Akiyama, J. and Ura, M.: Motion of dense fluid
released into quiescent water with finite depth, J of
Hydrau., Coast. Environ. Eng., JSCE, WNo.635/11-49,
pp.141-152, Dec., 1999.

11) Lele, S.K.:. Compact finite difference schemes with
spectral-like resolution, Journal of Computational Physics,
103, pp.16-42, 1992.

12) Edison, T. M.: Numerical simulation of the turbulent
Rayleigh-Banerd problem using sub grid modeling, J. Fluid
Mech., Vol. 158, pp.245-268, 1985.

(Received September 30,2003)

- 1182 -



