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Fluvial bars are large-scale topography with a planimetric scale of the order of channel width, which

appears on riverbeds when the aspect ratio is sufficiently large.

In order to describe the formation of

such multimodal fluvial bars, a weakly nonlinear analysis is performed in this paper with the use of the

amplitude expansion method.

In the analysis, the fundamental perturbations with four different

harmonic modes are imposed on an initially flat riverbed. The equilibrium bar profiles obtained by the
present multimodal analysis are comparable to those obtained from the uni-modal analysis and the

numerical analysis when the aspect ratio is small.

An irregularity in the time variation of bar amplitude

that has not appeared in the uni-modal bar analysis, is promoted with increasing aspect ratio.
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1. INTRODUCTION

Fluvial bars are large-scale topography with a
planimetric scale of the order of channel width,
which appears on riverbeds when the aspect ratio 3
(channel width/water depth) is sufficiently large. It
is known that the bar formation is caused by the
instability between flow and erodible beds, and that
a flat bed becomes unstable and evolves into
alternate bars or multiple bars.

The aspect ratio £ is one of the most essential
parameters for the bar formation. The alternate bar
is the first unstable mode (m = 1) that appears just
above the critical aspect ratio .. As /3 increases,
the multiple bar (m > 1) starts to appear in river
channels. It is known that regular patterns of
multiple bars observed in the early stage of the
experiments'? tend to transform into irregular
patterns such as braided channels or self-formed low
water channels.

Instability analyses of bars have been extensively
performed for recent 40 years. At the beginning of
the research, instability analyses were performed in
term of linear level. Then, the focus has shifted to
the nonlinear behavior of the finite amplitude bars
beyond the linear region””®. The authors”
extended the analysis of Colombini er al” by

employing the amplitude expansion method in order
to investigate the equilibrium amplitudes of both
alternate and multiple bars, and suggested that the
multimodal interaction is one of the causes of
irregularity that appears in the developing process.
Fukuoka and Yamasaka® performed a nonlinear
analysis considering the interaction of two different
modes, but they found no irregularity. Schielen er
al.” proposed another analysis to study more details
of the instability of alternate bars. Considering
perturbations growing in a narrow spectrum at
near-critical aspect ratio [, they found a
quasi-periodic behavior of the alternate bars.

In this study, we perform a weakly nonlinear
analysis of bars considering the interaction between
four different modes with the use of the amplitude
expansion method in order to investigate the time
development of bars.

2. FORMULATION

(1) Governing equations

Let us consider flow in a straight channel with a
constant width # and non-erodible banks (Fig.1).
The normalized St. Venant shallow water equations
are expressed as
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Fig.1 Sketch of coordinate system
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where x and y are the streamwise and lateral
coordinates respectively, U and V are the velocity

components in the x and y directions respectively, A

and Z are the flow depth and bed elevation
respectively, S is the bed slope, F is the Froude
number in the normal flow condition, [ is the aspect
ratio, and Cj,, U, and H, are the friction coefficient,
streamwise velocity and flow depth in the normal
flow condition, respectively.

The time variation of bed elevation can be
described by the following normalized Exner
sediment continuity equation:
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where ¢ is time, and O, and O, are the x and y
components of the bedload transport rate. We use
the linearized version of bedload formula by Kovacs
and Parker”, which includes the effects of local bed
slope in the both streamwise and lateral directions.
The normalized forms of the formula are
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where ®=17_/7,, 7, is the critical Shields stress

for a flat bed, and 7z, is the Shields stress in the
normal flow condition.

The following normalization has been used to
derive the above equations:

(3.5 =W(x,), (@, V)y=U,U,y) (8a-d)
(H,Z,D,)=H (H,Z,D,), (_Mt (8e-h)
0, = (Rng)f )E £ 1/2) 9)

where the tilde denotes the dimensional values, O, is
the sediment transport rate in the normal flow
condition, g is the dynamic Coulomb friction
factor, and « is the ratio of the shear velocity to the
representative fluid velocity in the vicinity of the
bed. Kovacs and Parker” suggested that s, = 0.84
and &” =11.9. These values are also used in this
study.

(2) Multimodal asymptotic expansion
The following perturbation is imposed to the
normal flow:

(U,V,H,Z) = (1,0,1,-85x)
+(U1’VX’HI’ZI)_’_(Uz,Vz’Hz,Zz) (10)

where the subscript 1 and 2 denote the first order
terms at OQ 4,18,|cl,| D[) and the second order terms
at of42||s?
fundamental disturbances are expressed by small

perturbations of four different modes m =1, 2, 3 and
4 with small amplitudes (4, B, C and D), and their

U, respectively. Assume that
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wavenumbers are harmonics in the longitudinal
direction described by m multiplied by . The first
order terms at oq Al,|Bls|Cl| Dl) can be written as
sV Hyy ) = AEL (159,115 B0 2)) + €.

+BE, T, (U195 Vig2 s gy 2y ) HCC

+CE T (555 V1535 Misy s Z133) + €.

+DE4F4(u144’v144’h144’zl44)+c‘c' (11)
where c.c. denotes the complex conjugate of the
preceding term, and E,, and I',, are

cosmny forU,H,Z
for vV

E,=expmike, T :{ (124, b)

sin may

In the second order, the nonlinearity by the
interaction between the fundamental perturbations
results in the deformation of the base flow with
higher harmonics and lower harmonics both in the
Jongitudinal and transverse directions. Since each of
the fundamental perturbations has the factors AE\ ',
BE)I;,, CEsI's and DEJ,, the interaction of the
fundamental perturbations yields the second order
terms with 4%, 44", B%, BB", C?, CC", D*, DD, 4B,
A'B, AC, A'C, AD, A'D, BC, B'C, BD, B'D, CD,
C'D as well as EIL, (i,j=0-8). Some examples of
the terms produced by the nonlinear interaction can
be described as

AELz), x AEL 2, = AzEz(rzz;zé + ZzAz/:)) (134)
AETz, x AETyzhy, = A4 [Tz08 +2247) (13b)
AET 2, x BET,z,,, = ABE,([,z{2 +T,z2) (13¢)

where * denotes the complex conjugate.

The time development of the fundamental
amplitudes can be described by the Landau
equations. In this multimodal case, the development
of the amplitudes is influenced by the nonlinear
interaction with the second order terms, which
possess the same harmonics as the fundamental
perturbations E\I'y, E,1, Esls, Esly.  As a result,
the Landau equations take forms of the following
four first-order differential equations with complex
variables:

%=43A+/1;’A*B+/1;‘B’C+,1;*C'D (14)

_‘;’éi =B+ A A L BLCH D (19)
‘;_f:,ig'cmfABmgA’D (16)
5‘;_’? = JPD+ P AC + 0B (17)

where /?,é (j = 4, B, C, D) are linear growth rates,

A (i=1,2,3;j =4, B, C, D) are the Landau
constants, and the terms with the orders higher than
the second order are neglected. The above equations
are easily solved numerically. We used the
following initial conditions: 4(0) = 107, B(0) =10,
C(0) = 10, D(0) = 107. 1t has been found that
effects of initial conditions disappear after
sufficiently long time as long as the initial values
are sufficiently small.

(3) First order expansion
We have the following equations at the first
order:
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By substituting the first order perturbations (11), the
above equations are rewritten in matrix forms

uabc
L‘ibc Z"—'bc = 0’ a= l, b=c= 1,2,3,4 (23G-d)
abe
z

where the subscript @ denotes the order of
expansion, the subscripts b and ¢ denote terms
accompanying E;I'., and the superscript ¢ denotes
terms with the amplitudes 4, B, C, and D,
respectively. The matrix L?, can be written as

L =1, ij=1,234 (24q)

L, =2BS+ibkF?, 1, =0, I, =ibk - pS(1+5C"7),
L,=ibk, 1,,=0, I, =pBS+ibkF*, 1, =—cnm,
L, =—cr, Ly =ibk, I, =cm, L, =ibk, L, =0,

L, =ibk6,,. 1y =cm, 1, =-512(ibkC!/?6,, ),

1
ly=Ny +6,, (en) + 3 0, (bk) (24b-q)
where
Al;in = ’12)4’ Allgzz = /1(1:’ A(1‘33 = ’15’ A[1)44 = /?“é) (25a-d)
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Fig.2 Longitudinal profiles by multimodal, unimodal
and numerical simulation at y = 1 cm.
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flow direction

Fig.3 Bed topography for = 20.

Solving (23a-d) with the solvability condition
that the determinant of L%, must vanish for

non-trivial solution, we can obtain the linear growth
rates as functions of the parameters 3, S, F, @ and k.

(4) Second order expansion
We have the following equations at the second
order:
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where P, O, R, and S on the right hand sides of
(26)-(29) denote the inhomogeneous terms produced
by the interaction of the fundamental perturbations
(more details can be found in ref.6). Categorizing in
terms of EI',, P, O, R, and § are separated into p,;;,
Gayj> 725 and sy, respectively (i, j = 0-8).

Since the nonhomogeneous heterogeneous terms
include EI; (i, j = 0-8), the solutions of the second
order expansion are expected to have the following
form:

(Uz Vo H,, Zz): ¢ ugbc ’vfbc ’ hg})c ’Zgbc)Ehrc (30)

bh=1,c=1

where ¢ = 4%, 44", B*, BB', C*, CC", D*, DD", AB,
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Fig.4 Instability curves. (Flat beds are unstable in the
region enclosed by curves.)

A'B, AC, A°C, AD, A'D, BC, B'C, BD, B'D, CD,
C'D.

By substituting (30), (26)-(29) are rewritten in the
following matrix forms

[ ¢
U gpe pabc
s | Vi I ~ 4 Gla)
L] @)= ’ ,a=2b=c=1,234
habc rabc
é [ J
Z abe sabc - Zlbc ﬂi

where A/ are the Landau constants, (¢, i, j) are
(A:B, 1, 4), (B:C, 2, 4), (C'D, 3, A), (44, 1, B),
(A4C, 2, B), (BD,3,B), 4B, 1,(C), (4D, 2, C),
(4C, 1, D) and (BB, 2, D). The matrix L/, can
be obtained from (24a-q) with a replaced by 2, and
the term A%, in L“;bc are expressed as

ALt =) w2l A5 =)
NGY =) + 20, A, =247,
N =) w25 A% =) 428,
N = A2 NS =) 2

NG, = A5+ A, AN, =240 (32a+)

The Landau constants in the second order cannot
be determined uniquely from the above equations.
This was a critical problem with the amplitude
expansion method. Herbert® resolved this problem
by introducing a clear definition of the amplitude.
Therefore, the amplitudes of the fundamentals with
the factors E\I'y, B>, EsI'y and E,I4 are redefined
as A, B, C and D, respectively. The following
normalization is then possible:

- 1012 -



L AAANAAANNNAANND

MACAVAYVAVREVRVETRVATAVAVRVAVE

Fig.5 Time development of the fundament amplitudes for f= 20; (a) Re[4] and (b) Re[D].
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Fig.6 Time development of the fundament amplitudes for f= 25; (a) Re[4] and (b) Re[D].
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Fig.7 Time development of the fundament amplitudes for = 27.5; (a) Re[4] and (b) Re[D].

z, =1, z,,=0, i=1,2,3,4 (33)

1ii
Solving the matrices (3la-) with the use of the
normalization by (33) provides the Landau constants
in the second order.

3. RESULTS AND DISCUSSION

The Landau constants both in the linear and
nonlinear levels can be computed by substituting the
non-dimensional parameters as follows:

A= f(B,8,F,0,k),i=0-3andj=4,B,C,D (34

From the experiments by Ikeda”, Run No.18 is
taken up in order to investigate the behavior of bar
development. Dimensional hydraulic parameters
applied in the experiment are transformed into
non-dimensional parameters: 3= 20, § = 0.0104, F
=1.07, ®=0.508 and k= 0.9.

A comparison among the multimodal analysis,
the uni-modal analysis” and the numerical
simulation'” is shown in Fig.2. The profile of the

multimodal analysis is obtained by substituting the
amplitudes from A4 to D calculated by (14)-(17) into

(11) while the uni-modal analysis is performed up to
the third order because our main objective is to
investigate the qualitative features of the multimodal
bar interaction. Nevertheless, we found that the
profile obtained in the multimodal analysis is
comparable with those of the other analyses. The
equilibrium bar height obtained in the experiment,
the multimodal analysis, the uni-modal analysis and
the numerical simulation are 2.25, 1.25, 1.67 and
1.24 cm, respectively. Figure 3 shows the contours
of bed topography computed in the present analysis,
where a brighter color corresponds to a higher
elevation.

Let us study the behavior of bar amplitude when
the aspect ratio increases. The instability diagram
for four different modes m = 1, 2, 3 and 4 obtained
from the uni-modal analysis is shown in Fig.4.
Figures 5a and 5b show the time variations of the
real parts of the amplitudes 4 and D, respectively, in
the case = 20, in which the mode m = 1 is in
unstable regime and the other modes m =2, 3, and 4
are in stable regime. Though B and C are omitted
because of the limitation of space, they show rather
regularly periodic patterns as well as 4 and D. It is
found that, even though the modes m = 2, 3 and 4
are in stable regime, they are excited to be unstable
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Fig.8 Parametric plot of Re[4], Re[B] and Re[C]
for f=27.5.

due to the multimodal interaction.

The results in the case =25 are shown in Fig.6.
In comparison with Fig.5, the average amplitude
increases with the aspect ratio 4. It is found that
small fluctuations are superposed on the regular
oscillation due to the multimodal interaction.

Figure 7 shows the results in the case § = 27.5.
The time development of the bar amplitude is shown
to become more irregular. Figure 8 shows the
parametric plot of the real parts of the amplitudes 4,
B and C from ¢ = 0 to = 40. The three-dimensional
position of each point represents the values of 4, B
and C at a certain instant. The path shows a complex
pattern, which implies the irregularity of the time
variation of bed topography. Remind that we
focus on the irregularity in the time variation of bar
amplitude, so that the spatial distribution of bar
amplitude never becomes irregular in the analysis.

Examples of the contour to express bed
topography for the case §=27.5 is shown in Fig.9.
It is found that bed topography deforms itself
because of the fluctuations as time developed.

It is known that the regular patterns of multiple
bars are unstable and are easily evolved into
complex braided patterns characterized by the
chaotic behavior". This analysis suggests that the
irregularity in time variation can be produced by the
multimodal interaction of the first four simplest
unstable modes (m = 1, 2, 3 and 4) when the aspect
ratio is high. If more modes are included in the
analysis, the irregularity is expected to be
emphasized. However, it should be noted that it
has not been clarified if the irregularity shown in
this analysis has the same chaotic features as real
braided patterns have. This needs further study.

4. CONCLUSION

A multimodal analysis of four different modes m
=1, 2, 3 and 4 is performed with the use of the
amplitude expansion method. The major results
obtained from the analysis are the following:

flow direction ——»

Fig.9 Bed topographies for f=27.5;
(a) t=40 and (b) t = 100.

e An equilibrium bar profile obtained from the
present analysis is found to be comparable to those
obtained from the uni-modal analysis and the
numerical simulation, even though only the lower
order terms are taken into account.

® The multimodal interaction causes the irregularity
in the time variation of the bar amplitudes. The
irregularity is promoted with increasing aspect
rat1o.
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