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The Thomas-Fiering stochastic model for synthetic streamflow generation is used to determine monthly
inflow scenarios for the watershed of the reservoir that supplies the city of Matsuyama, Ehime Prefecture.
The scenarios are going to be used by a stochastic programming model which is being developed for the
optimal operation of the reservoir. The Thomas-Fiering model allows for the non-stationarity of seasonal
data. Twenty years of historical data are used for calibrating the model parameters and a new 20-year
synthetic series is generated. The comparison between the statistics of historical and synthetic discharges
shows that the model can preserve the characteristics of the historical series and effectively incorporate

them into the generated data.
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1. INTRODUCTION

The sustained economic development of any region
is directly related to reliable and well-managed water
resources. In areas with scarcity of water and
increasing population, the principal means of
avoiding water shortage is by an efficient
management of the existing systems.

The city of Matsuyama, capital of FEhime
Prefecture, suffers periodically from problems
originated from the lack of water. There is a great
necessity of a better development and management
of the water resources in the region. Several studies
have been carried out in order to apply mathematical
optimization methods to the operation of the reserv01r
that supplies the city (Ishitegawa Dam)". The
uncertainties of the inflows into the reservoir play a
very important role in the determination of the
optimal operating policy and thus should be taken
into account by optimization models. One way of
doing so is by using stochastic programming

techniques, which implicitly incorporate the
uncertainties of the inflows into the optimization
model.

The authors are currently implementing an
optimization model based on the so-called stochastic
programming with recourse” for the optimal
operation of Ishitegawa Dam. The model aims to
determine the best allocation of water for city supply
and irrigation that meet their respective demands to
the greatest extent possible. The general structure of
the stochastic programming model is as follows:
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in which ¢ is the time index; N is the operating
horizon; [ is the scenario index; L is the number of
scenarios; o, o, a; are coefficients that measure the
relative importance given to each of the reservoir

operation purposes; (', is the allocation for city
supply; T, is the demand for city supply; Q. is

the allocation for irrigation; T}, is the demand for

irr
irrigation; p' is the probability of occurrence of
scenario /; E and D"/

stor stor

(excess) and shortage (deficit) variables defined as in
Eq. (8); ¥}, is the reservoir storage; V. is the

are, respectively, surplus

random inflow to the reservoir; VS;,,,, is the amount of

"% is the total

rel

water that might spill from the weir;

max
irr

capacity of the surface water treatment plants;

is the capacity of the irrigation system; V3% ig the

stor

dead storage of the reservoir; V.12 is the capacity of

stor
the reservoir; and V™ is the maximum spill.

As seen above, the stochastic programming

approach requires a set of possible future inflow

scenarios (17,;; ), each of them having a particular

probability of occurrence (p'). This paper deals with
the determination of these scenarios.

Forecast of future discharges is usually performed
by means of stochastic streamflow generation
models”, which produce synthetic data having the
same statistical features of the historical streamflow
series. In this study a stochastic streamflow
generation model is applied to the watershed of
Ishitegawa Dam. First, the parameters of the model
are calibrated and used to produce a synthetic
monthly inflow series, which is compared to the
historical one. Then, a set of inflow scenarios are
generated for past years and compared to the actual
inflow records for those years.

2. DESCRIPTION OF THE MODEL

Basically, two approaches are available to generate
synthetic monthly flows”. The first one removes the

seasonalities and periodicities in the monthly flows
and then the resulting stationary season is modeled?.
The second approach uses the parametric
autoregressive Thomas-Fiering”® model, which
tries to preserve the various statistic parameters such
as mean, standard deviation, correlation coefficient,
etc. Either of the approaches has its own advantages
and disadvantages. The Thomas-Fiering model was
selected in this study due to its relative simplicity and
for allowing the seasonal data series to be
non-stationary.

The Thomas-Fiering model may be viewed as a
non-stationary first order autoregressive (AR)
model®. First order AR models, also called Markov
models, are normally used to describe stationary
series, e.g., annual runoff series. A series is said to be
stationary when the probabilistic laws that rule the
process do not alter with time. AR models adequately
reflect the phenomenon known as persistency, or
memory of the process, according to which the value
of the discharge at any time is dependent in part on
the value of the discharge in the previous time. This
dependency can be measured by a regression analysis
of the flow at a given time and its previous value. As
show in Fig. 1, if the regression coefficient of season
J on j-1is b, then the regression line value of a
seasonal flow, X, can be determined from the
previous season’s flow, X.;, by the following
equation:

Xj = '[[j + bj*l (Xj~1 - /uj—l) (9)

in which 4, and y;., are the average flows in seasons j
and j-1, respectively.

Any hydrologic series observed with a time
interval of less than a year would have a
non-stationary structure because of the cyclic
component with a period of one year introduced by
the astronomic cycle. The seasonal models must take
this  non-stationarity  into  account.  The
Thomas-Fiering model was developed to implicitly
allow for the non-stationarity of seasonal data. In this

XA
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Fig. 1 Principle of the Thomas-Fiering model.
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model, the parameter b, is calculated as below:

== (10)

where p; is the correlation coefficient between the
flows of jth and (j-1)th seasons; o; and o, are the
standard deviations of the flows in seasons j and j-1,
respectively.

The variance of the measured data about the
regression line is taken into account by adding a
further  stochastic = component  given by

zo j1/(l - pjz.) in which z is a normal process with
mean zero and variance unity N(0,1). In practice, the
seasonal model is used by replacing the population
parameters by their respective sample estimates
obtained from the historical record. Thus, the general
Thomas-Fiering model in terms of the sample
estimates is written as follows:

X, =%, + 2 k%, 14 zs,JA-r?)
J =X T T Xt s, J

Jj-1

Y

in which x; is flow in the jth season; x; and s; are the

mean and standard deviation of the flows in jth
season, respectively; 7; is the correlation coefficient
between the flows of jth and (j-1)th seasons; and z is
a normal process with mean zero and variance unity.
In the Thomas-Fiering model the flow in any
season is thus given by a sum of three terms: the first
term is the mean flow in that season; the second term
is the regressed component on the flow in the
previous season; and the third term is a random
component to reflect the desired variance.

3. DETERMINATION OF
PARAMETERS

THE

The Thomas-Fiering model was implemented in
MATLAB environment. Twenty years of historical
monthly inflow data were used for calculating the
statistical sample parameters of Eq. (11).

Analyzing the histogram of the 20-year inflow data
(Fig. 2), it can be noted that they follow a skewed
distribution. In order to determine the distribution
that would best represent these data, the sample
skewness coefficient was compared with the
skewness coefficients of the Gamma and the
Log-Normal distributions, as shown in Table 1. Since
the value of the sample coefficient was closer to that
of the Gamma distribution, this distribution was
selected for the random component z.
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Fig. 2 Histogram of the historical series.

Table 1 Skewness coefficients

Sample | Gamma | Log-Normal

3,71 3,59 10,94

When the flows follow Gamma distribution, the
random component z has to be replaced by ¢ given
below, so that the skewness verified in the sample is
preserved in the data to be generated:

R 3
o2 {Hgﬁ__&} 2 12

g, 6 36 g
where z is from N(0,1), as usual, and g; is called the
modified skewness coefficient given by

3
~ _ & T8

g = (l—rjz)l's (13)

in which g; is the skewness coefficient of the
observed inflow data.

Table 2 shows the parameters from expressions
(11) and (13) calculated by using the historical
inflow data (m%/s).

4. GENERATION SYNTHETIC

SERIES

OF THE

With the parameters from Table 2, a new 20-year
synthetic series was generated. Statistics such as
mean, standard deviation and skewness coefficient in
each month of the synthetic data were compared with
those from the historical series. Different numbers of
independent processes z were used for each year of
the synthetic series: one single process (and thus one
single series generated for the given year), 10
processes, or 100 processes. Table 3 shows the
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Table 2 Monthly sample estimates

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
X 6,25 8,41 10,17 12,89 16,88 58,23 102,14 35,51 39,95 20,48 11,89 9,72
r 0,10 0,54 0,50 -0,02 0,37 -0,16 0,11 0,74 0,76 0,04 0,08 0,73
s 5,70 7,30 6,83 8,70 16,12 50,16 109,77 59,73 48,44 24,96 11,74 10,46
§ 1,34 0,68 1,54 0,86 1,58 0,68 1,14 4,57 1,26 2,41 1,45 2,63
Table 3 Comparison of monthly and annual statistics for the historical and synthetic series
Historical Series Synthetic Series Synthetic Series Synthetic Series
(1 independent process) (10 independent processes) (100 independent processes)
Mean Standard Skewness Mean Standard Skewness Mean Standard Skewness Mean Standard Skewness
Deviation | Coefficient Deviation | Coefficient Deviation | Coefficient Deviation | Coefficient
Jan 6,2 57 1,7 3.4 59 1,0 6.6 59 1,2 6,3 5.7 1.6
Feb 84 7.3 08 99 6,8 0,6 98 71 0,8 84 6,9 0.9
Mar 10,2 6,8 1,4 12,5 6,4 1,1 10,9 7,0 0.8 10,2 7,0 1,3
Apr 12,9 87 1,1 12,1 98 1,5 12,9 93 11 13,0 88 0,9
May 16,9 16,1 1.6 16,3 15,3 1,1 16,9 15,5 17 16,5 149 1,3
Jun 582 50,2 0,8 555 51,1 0,7 59,7 50,4 1,0 60,2 483 1,0
Jul 102,1 109.8 14 122,7 104,3 1,0 106,9 1133 1.8 1077 1039 1,3
Aug 35,5 59,7 24 583 488 0,9 36,9 484 2,0 41,4 563 25
Sep 39,9 484 1,5 49,5 938 0,7 36,4 38,1 12 439 459 1,6
Oct 20,5 25,0 3,0 14,8 20,4 1.8 19,1 239 34 20,8 254 2,5
Nov 11,9 11,7 1,8 11,2 8,9 0.9 13,1 114 12 11,7 11,0 1,6
Dec 9.7 10,5 1,8 99 12,7 2.2 10,6 90 1,2 10,0 10,3 1.8
Annual | 277 497 38 31,8 50,8 32 283 49,8 46 292 49,7 38
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Fig. 3 Comparison between (a) mean and (b) standard deviations of the historical and synthetic series (100 independent processes).

results obtained.

Fig. 3 shows graphs comparing the mean and
standard deviation of the historical and synthetic
(with 100 independent processes) series, as
illustrated in Table 3. The histograms of the synthetic
series for all numbers of independent processes are
presented in Fig. 4.

5. GENERATION OF THE
SCENARIOS

INFLOW

The stochastic programming model (1)-(8) is going
to be tested with data from past years (1979-1996).
For each year, the optimization model will use
monthly inflow scenarios for the current year as well
as the next year, e.g., for the operation in 1996 the
model needs the scenarios for the period 1996-1997,
and so on. Consequently, the Thomas-Fiering model
was used to generate monthly inflow scenarios for
each pair of years within the period 1979-1996. As
illustration, Fig. 5 shows data for a 5-scenario
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Fig. 4 Histogram of the synthetic series according to the number
of independent processes: (a) 1 process, (b) 10 processes, (¢) 100
processes.

generation (i.e., using five number of random
processes z) for the last ten years. The observed
inflow data are also shown for comparison. Any
number of scenarios can be generated by selecting
different independent processes. Each scenario
represents one possibility of occurrence of the inflow
in the given year.

6. CONCLUSIONS

In this study, the stochastic streamflow generation
model of Thomas-Fiering was applied to
synthetically generate monthly inflow scenarios for
the reservoir that supplies Matsuyama City, in Ehime
Prefecture. The scenarios are going to be used by an
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Fig. 5 Generated scenarios (1987-1989 until 1990-1991).

optimization model based on  stochastic
programming which is currently being developed for
the operation of Ishitegawa Dam.

The main characteristic of the Thomas-Fiering
model is to implicitly allow for the non-stationary
data of monthly inflows.

From the results obtained with the use of a 20-year
historical series for computing the model parameters,
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Fig. 5 (cont.) Generated scenarios (1991-1992 until 1994-1995).

it was noticed that the statistics (mean, standard
deviation and skewness coefficient) of the generated
data were very close to their historical
correspondents. Besides, the histogram of the
historical series was similar to those from the
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Fig. § (cont.) Generated scenarios (1995-1996 and 1996-1997).

synthetic ~ series. This signifies that the
Thomas-Fiering model could  successfully
incorporate the statistical features of the historical
data into the generated values. Thus, it can be said
that the model is suitable to be used for producing the
inflow scenarios needed by the stochastic
optimization model.
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