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In this paper a basic study is presented to develop a method to correct solid precipitation data from
gauge observations using the passive microwave brightness temperature data and data assimilation.

Observation and modeling results are indicating a high sensitivity of the 89 GHz channel to fresh snow
on the ground. The change in the brightness temperature due to snow is used to correct observed solid
precipitation data. The old brightness temperature data, the adjusted precipitation and the density of the
fresh snow are input parameter for a radiative transfer model. The result is compared with the new
brightness temperature and by iteration the precipitation data is adjusted until the modeled value agrees
well with the new brightness temperature.

Good results have been achieved using snow pit data from Sapporo and modeled brightness
temperatures. A sensitivity analysis showed, that this cost minimization problem has a unique solution.
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1. INTRODUCTION

Due to its heigh albedo and thermal insultaion,
snow plays an important role in the global energy
and water balance and the monitoring of long term
changes in the snow storage is providing valuable
information for global climate change studies. But
also for local water resources problems, snow is an
important factor. For example it changes the runoff
characteristics of a catchment and influences soil
moisture and evaporation).

The Climate and Cryosphere (CliC) Project
stated, that "Knowledge of the amount,
distribution, and type of precipitation and its
temporal and spatial variability on a wide range of
scales, 1s essential for the study of cold climate and
related hydrological processes"?.

Reliable snowfall observation data using
precipitation gauges is difficult to obtain. This is
due to systematic problems of the observation
method. Due to wind-induced undercatch or
evaporation only some part of the actual
precipitation is observed by the gauge”.

Observed and modeled brightness temperature
data at 89 GHz is showing a high sensitivity to
fresh snow on the ground. In this study this fact is
used to start the development of an algorithm to
correct observed precipitation data by evaluating
the catch efficiency of the gauge. This is done by
relating the change in the brightness temperature to
the total amount of new snow on the ground.

Several satellite algorithms are available to
estimate the snow depth and snow water equivalent
of a snow covered area. These algorithms are
using frequencies at 19 and 36 GHz". Fresh snow
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Fig. 1 Algorithm Overview

on the ground is transparent at these frequencies
and therefore these algorithms can’t be used to
related the change of SWE or snow depth to the
actual solid precipitation.

2. METHODOLOGY

(1) Algorithm Description

The brightness temperature observation of a snow
covered land surface depends on the physical
properties of the snow, including the size of the
snow grains and the density of the snow pack, and
the emission of the underlying ground. If these
physical properties are known, it is possible to
estimate the brightness temperature at the surface of
the snow layer using a radiative transfer model. But
due to the complex vertical heterogeneity of a snow
pack (e.g. grain size), it is difficult to directly
retrieve snow pack properties using brightness
temperature observation. Therefore in this study a
data assimilation scheme is used te couple a
radiative transfer model and a snow (accumulation)
model to compare brightness temperature data and
the properties of fresh snow on the ground.

The brightness temperature at 89 GHz is showing
a high sensitivity to the amount of fresh snow on the
ground. Therefore it is possible to relate the change
in the brightness temperatures at this frequency
between two different times (at /=0 and 7=1) to the
accumulated new snow. The advantage of this
algorithm is, that it is not necessary to know the
physical properties of the old snow. In addition the
fresh snow on the ground can be assumed to have a
homogenous vertical profile, which further
simplifies the problem.

Fig. 1 provides an overview of the algorithm. The
gauge data (SWE,), the first guess of the correction
factor (c¢) and the density of the new snow are input
parameters for a snow model. The result of the snow
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Fig. 2 Data Assimilation

model and the brightness temperature for the old
snow (7B,) are then used to calculate the radiative
transfer in the fresh snow. The results of the
radiative transfer model (7B,,) are then compared
with TB,. During the assimilation process, the
correction factor for the observed solid precipitation
and the new snow density will be updated, until
TB,.1s in good agreement with 7B,.

An important assumption in this algorithm is, that
TB, does not change between the two observations.
Snow grain size, density and temperature are
parameters, which can influence the brightness
temperature. The change of the grain size and the
density are small within the selected time period
between =0 and ¢=1, e.g. 1 day, and therefore the
effect of the change on 7B, can be neglected. The
temperature of the snow cover can change by
several degrees during a day, but the effect on the
TB is small due to the low emissivity of dry snow.

Fig. 2 provides an additional overview of the data
assimilation process. The cost function is minimized
by adjusting the correction factor for the observed
precipitation and the density of the new snow. These
parameters are updated wusing an heuristic
minimization method called simulated annealing”.
This method was successfully applied to the
assimilation of soil moisture data®.
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(2) Cost Function

The assimilation scheme is used to minimize the
cost function J by adjusting a state vector x”. In
general J can be separated into two different costs,
one represents the background error J; and the other
one the observation error J;:

J=J,+J, ey

The background error Jg expresses the change of
the initial conditions from the first selected initial
state. For this application the initial state (x,) of the
snowpack 1is not changed, because only new
accumulated snow is considered and therefore J,
can be neglected. ./ then reduces to the observation
error J,, which usually expressed the difference
between the observed and modeled values by
considering the error covariance matrix R:

N
7= 00 =5 (bl 2T R (Bl - 50) @
i=1

»? is a vector representing the satellite observation
at 89 GHz (vertical and horizontal polarization),
which will be assimilated. H is the radiative transfer
model (observation operator) and R is the error
covariance matrix of the observation. x; represents
the state vector at f calculated by the snow
accumulation model M (model operator) using the
state vector x, at ¢, as initial conditions and forcing
data f. The forcing data includes also the corrected
precipitation data. The state vector x; comprises the
snow height and density:

x; = M(x,, f) (3)

x, represents the initial state of the snowpack. In
this scheme only the accumulation of new snow is
considered, therefore x, represents a state with no

snow on the ground. Combining Eq. (2) and Eq. (3)
yields the cost function for the assimilation scheme:

s, D=3 2ol =0T -

R M (o, 1)) 57)
The equation above shows that the brightness

temperature data is directly included into the
minimization process of the cost function J. Which

means, that the state of the modeled and real snow
pack can be compared by comparing modeled and
observed brightness temperatures.

(3) Model Operatore
In this application a simple snow model is used as
model operator, which calculates the accumulated
snow height on the basis of the corrected
precipitation data and estimated snow density.
The settlement of the snow is estimated by
calculating the viscous compression®:
dp, W
i (5

where o, represents the density of (dry) snow, W
the overburden snow load and 7 the compactive
viscosity coefficient, which can be calculated as®:

n=n,-exp(Kp, - a,T) ©6)
where 19 = 6.9-10° kg-s/m, K = 2.1-10% m*/kg and
o, =9.58:107 /°C.

This simple approach was selected, because for
this application only the accumulation of the new
snow is of interest. More detailed processes like
snow grain growth can be ignored because of the
short time period of interest.

(4) Observation Operator

The Microwave Emission Model of Layered
Snowpack” (MEMLS) with the extension for
coarse-grained snow'” was selected as radiative
transfer model. This model was explicitly developed
for the snow case and successfully applied in
Switzerland'?, where the situation of the snow pack
is similar to Sapporo.

The vertical fluxes in a multi-layered media can
be express by four up- and down-welling brightness
temperatures (see also Fig. 3):

Bj = Sj~1Aj + (1 - Sj__l )Dj—l (8)
C,=(=5,)4;, +s,D, ©)

D;=t,B;+r,C; +e,I; (10)
where e represents the layer emissivity, #
represents the layer reflectivity, ¢ the layer
transmissivity, 7; the layer temperature and s; the
interface reflectivity between layer j and j+1. For a
snowpack with » layers A4,. represents the sky
brightness and D, the emission from the ground.

By introducing Eq. (8) and Eq. (9) into Eq. (7)
and Eq. (10) this system can be solved if 4,,; and D,
(boundary conditions) and e;, #;, s; and ¢, are known.
A, and D, are the sky brightness and the soil
temperature. The parameters e, 7, and f, can be
calculated from snow-pack properties by
introducing a six-flux radiative transfer model and
the improved born approximation.
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In the six-flux model the radiation for a given
polarization and frequency is reduced into two
vertical (T; and T,) and four horizontal streams (T;
and Tg). The horizontal fluxes are representing
trapped radiation, which can’t leave a layer, but are
couple with the horizontal fluxes due to scattering.
Since snow is a plane parallel and istropic medium
in the x,y plane, it is possible to reduce the six-flux
model to a 2 flux model with adjusted coefficients
for absorbtion (y,’) and scattering (3 ):

dT, '
~=toost| =71 - T.)- (R - T2)

E "
—d—zz’cosﬁl =—y'(T, ~T,)- (T, -T;)

6 represents the observation angle for the
brightness temperature measurements. For constant
coefficients in a layer eq. (11) can be rewritten as:

T,=T+A-exp(y-d")+B-exp(—y-d")

12
Ty=T+ry-A-exp(y-d)+r,-B-exp(-y-d") (12)
where:
y=r.(vo +273) (13)
d'=d/|cosd| (14)
r;,, and £, can be calculated from:
r=r0(1—té)~(1—r02t§)7I (15)
t:to(l—roz).(l—rozt(f)‘1 (16)
1o and t; are given by:
=y tri+r) (17
ty =exp(-y-d') (18)
The emissivity e; is calculated as:
e=l-r—t (19)

The layer reflectivity s; is calculated on the basis
of the Fresnel reflection coefficient (F)):

2
s; = ‘FJI (20)
The observed brightness temperature can then be
calculated by:
TBcalczsnAnH +(1—Sn)Dn (21)

(5) Simulated Annealing

To reduce the cost function of the assimilation
scheme, a heuristic method called simulated
annealing is introduced. This method can find the
global minima in the surface spanned by the cost
function.

Compared to adjoint models simulated annealing
has advantages in dealing with non-linearities and
discontinuities. It is able to solve the problem of
data assimilation into an almost steady state for a
simple, highly non-linear model'”. The approach
used by simulated annealing is an analogy to

thermodynamics (annealing of metal)'?.
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new Layers

Fig. 4 Snowpack Layer

The change of the assimilation parameters is
constrained by the lower and upper limit of all
possible values:

xelR,R,] (22)

where x is the vector of assimilation parameters
with dimension » and R, respectively R, are
representing the lower and upper limits of x. The
state vector x is updated by an random increment &x:
Xi =X, +8(R, — R;) (23)

The generation of the random increment x and
the annealing schedule governs the performance of
the assimilation. The generating function is defined
by

. ) 1 [2uf—1'
&/ = sgn(u’ _E]Tj (1 +Fj -1 24)

where # is a uniform distributed random number
(i € [0,1)) and j represents the j-th element of the
state vector.
The annealing schedule for 7 is:
T/ =T{ -exp(c-i"") (25)
where n is the dimension of the state vector and ¢
an analogy of the Boltzmann constant.

3. Data

For the application of the algorithm snow pack
observations for the winter season 1996/97 in
Sapporo, Japan have been used. This data contains
an intensive data set of daily snow pits as well as
detailed forcing data including precipitation and
wind speed. The brightness temperature data was
calculated using the snow-pit data and MEMLS.

(1) Snow-pit Data

In a first step continuous periods have been
identified, during which snowfall occurred. Most of
the periods comprises of three or four observation.
Several changes to the snow pack data have been
necessary to avoid problems due to errors in the
observation of the snow pack density. The data was
corrected by identifying corresponding layers in
each snow pack data set and calculating an average
layer density. Fig. 4 shows an example how the
layers were re-arranged. It is assumed, that the snow
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water equivalent of the new layers 3 and 4 are also
representing the correct amount of new snow

(precipitation) between the 27 and 28" (layer 3)
and between 28" and 29" (layer 4).

(2) Forcing Data

The corresponding data set contains solid
precipitation, air and snow surface temperature,
wind speed and direction, relative humidity, up- and
downward short- and long wave radiation and
ground heat flux. For this study only the observed
precipitation data was used.

Snowfall observations using a precipitation gauge
are often strongly underestimating the actual
snowfall. In this study it is assumed, that the
observed increase in the SWE is equal to the actual
snowfall (see section 3.1) and that the gauge
observation are corrected during the assimilation.

Fig. 5 provides a comparison between the
increase of the snow water equivalent between two
days and the observed precipitation. There are two
main factors, which can explain the difference
between the observations. First, as mentioned, in
most cases the catch efficiency of a gauge is less
then one, therefore the observed solid precipitation
is lower then the actual snowfall. The second reason
is the redistribution of snow due to wind blowing.
This effect can cause an increase (accumulation) or
a decrease (ablation) of snow at the snow pit
location. A problem with the snow pit data was in
some cases the very high density of the new snow.
Values higher then 150 kg/m’ are probably caused
by an observation error in the field.

(3) Brightness Temperature Data

The brightness temperature data was created
using the corrected snow pit data set. In a first step
the TB of the snow pack at r=0 was calculated by
using the radiative transfer model. This result was
used as input for the estimation of the 7B at t=1,
where the radiative transfer was calculated using the
properties of the fresh snow. For example for the
case from Dec. 28" to Dec. 29" (see Fig. 4) first the
radiative transfer through layer 1 to 3 is calculated
(TBy). The results are then used for calculating the
radiative transfer through layer 4, which represents
the brightness temperature data (7B;). As mentioned
changes of 7B, because of changes in the layer 1 to
3 are neglected.

4. Results & Discussion

In this paper a basic study was presented to
develop an algorithm to correct snowfall
observation from gauge measurements by coupling
a radiative transfer and a snow model using data
assimilation and passive microwave brightness
temperature data at 89 GHz.
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Fig. 6 Assimilated Precipitation
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Fig. 7 Assimilated Density

The assimilation results can be found in Fig. 6
and Fig. 7. Fig. 6 shows, that in all cases the
assimilated precipitation agrees well with the
observed increase of the snow water equivalent.
Also the assimilated density agrees well with the
observation as it can be seen in Fig. 7.

The average relative error in the case of the
assimilated precipitation is 4.3%, for the assimilated
density the error is 2.4%.

-263 -



300

250

n
=3
=3

Density [kg/m3)

o
t=3

Q 2 4 6 8 10 12 14 16 18 20
SWE [mm]

Fig. 8 Cost Surface for 1997-02-07

(1) Local or Global Minima?

As mentioned the results of the assimilation
scheme are in good agreement with the observation.
For this application only the 8 GHz channel with
both the vertical and horizontal polarization is used.
This raises the question if there is really only one
optimal solution.

To evaluate whether or not only one unique
solution exist, the cost surface for the case at 1997-
02-07 was calculated. This was done by calculating
all possible cost values for the density (p,e[50,300]
where Ap=1) and solid precipitation (p<[0.0,20]
where Ap=0.1). The observation (p=117.0 kg/m’
and p=4.7 mm) is marked with a white cross. The
results of this simulation are presented in Fig. 8.
This figure shows the cost function as a contour
map, where dark areas are representing density and
precipitation combinations, which are close to the
optimum solution. It clearly shows, that only one
global minima exist. Similar results were obtained
by applying the same method to all presented cases.

(2) Satellite Data

For this study only modeled brightness
temperature data was available. But the results of
this study are showing the possiblity to use the
brightness temperature observation at 89 GHz for
snowfall observation.

A follow up study will be implemented to observe
ground based brightness temperature data to validate
the algorithm.

Also, if satellite based brightness temperature data
is to be used. It will be necessary to evaluate the
influence of the radiative transfer in the atmosphere
on the observation at 89 GHz.

(3) Meteorological Model Qutput
A further source for solid precipitation data, is
snowfall model output from meteorological models.

Meteorolgical model output data is available even
for remote areas, where no gauge network can be
found and in combination with observed satellite
brightness temperature data it is possible to validate
the model output and to provide an accurate
snowfall product.
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