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Failure to translate scale dependencies of dominating geomorphometric parameters into effective
hydrological models has posed a serious problem for ungauged basins where only coarse resolution
elevation data is available. To overcome this problem, scale laws that govern the relation in digital
elevation data resolution on geomorphometric parameters of topographic index of TOPMODEL have
been analyzed. A scale invariance model for down scaling of topographic index distribution has been
developed by introducing a resolution factor and a fractal method for the scaled steepest slope in
topographic index. The method successfully derived topographic index distribution of fine resolution
DEM by using only coarse resolution DEM. The scale invariance model has been applied to Kamishiiba
catchment (210 km®) and it is shown that the down scaled topographic index distribution is similar to a

target topographic index distribution.
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1. INTRODUCTION

Despite the enormous capacity of today’s (and
tomorrow’s)  information  technologies, the
complexity of the Earth’s surface is such that the
most voluminous descriptions are still only coarse
generalizations of what is actually present V. This
implies that the need for continued and sustained
research on scale issues is therefore self-evident. In
the field of hydrology, the desire to develop more
physically realistic distributed models has been
motivated for forecasting changes in hydrological
behavior due to a variety of land use and climate
changes and for hydrologic predictions in ungauged
basins. An important part of this goal is to replace
the dependence of models on calibrated ‘effective
parameters’ with physically realistic process
descriptions that use parameters inferred from the
direct observation of land surface conditions. As the
spatial extent is expanded beyond point experiments
to larger watershed regions, the direct extension of
the point models requires an estimation of the
distribution of model parameters and process
computations over the heterogeneous land surface.

If a distribution of a set of spatial variables required
for a given hydrological model (e.g. surface slope,
soil hydraulic conductivity) can be described by a
joint density function, then digital elevation models
(DEMs) and geographical information systems
(GISs) may be evaluated as a tool for estimating this
function. Now the question to be asked is whether
current GISs and current available spatial data sets
are sufficient to adequately estimate these density
functions. Several researches 2»»4 have discussed
the effects of digital elevation model map scale and
data resolution on the distribution of the topographic
index, concluding that there is interdependence
between DEM scale and topographic index
distribution. ~Although these researches have
demonstrated significant results concerning scale
dependencies, they fail to translate these relations
into effective hydrological models which have
posed a serious problem for the ungauged basins of
developing countries where only coarse resolution
DEM data, e.g. 30 arc second resolution DEM data
set in GTOPO30, USGS web site, is available 9.
Band et al. © point out that higher frequency
topographic information is lost as the larger
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sampling dimensions of the grids act as filter. This
is one of the nature and extent of the scale problem
and without its solution it is even more serious to
prediction in ungauged basins. If this argument is
accepted the hydrological modelers should seek
methods to acquire a more realistic subgrid scale
parameterization.

In this study we focus on the influence of DEM
resolution on dominating geomorphometric
parameters - such as slope angle, upslope
contributing area, which are considered as the main
controls in a number of hydrological processes - and
develop a scale invariance model by incorporating
scaling laws that can bridge the gap between scaling
issues. By using the model, the topographic index
distribution of fine resolution DEM is successfully
derived by using only coarse resolution DEM.

2. METHODOLOGY

Topographic index of TOPMODEL is defined as
a
A (”

where a is the local up-slope catchment area per
unit contour length and B is the slope angle of the
ground surface. TOPMODEL allows for spatial
heterogeneity by making calculations on the basis
of the topographic index distribution. Topographic
index is scale dependent which leads identified
parameter values to be dependent on DEM
resolution. This makes difficult to use model
parameter values identified with different resolution
model. To overcome the problem, scale invariant
model of topographic index is proposed. To scale
upslope contributing area per unit contour length a
and slope angle of the ground surface (3, resolution
factor and scaled slope with fractal method is
introduced.

(1) Theory of TOPMODEL

The topographic index defined by equation (1)
describes the tendency of water to accumulate and
to be moved down slope by gravitational forces. For
steep slopes at the edge of a catchment, g is small
and [ is large which yields a small value for the
topographic index. High index values are found in
areas with a large up-slope area and a small slope,
e.g. valley bottoms. The TOPMODEL theory can be
formulated by the concept of local saturation
deficits (water needed for saturation up to surface).

Following Beven and Kirkby ” subsurface flow
rate g)(i,f) can be related to local soil storage
deficit SD (i,t) by

-SD(i,t)
g,(0) =K, tanpe  /m @

where, iis any point in a catchment, tan[3; is local

slope angle, K; is lateral transmissivity or soil
transmissivity and m is a decay factor of lateral
transmissivity with respect to saturation deficit.
When a steady condition is assumed
—SD(i,t)/
aR=K, tanf,e " 3

where, R is steady input, a; is the area draining
through i per unit contour length. Equation (3) can
be rearranged to equation (4).

SD(it)= -m{m{ ® t”an B-,)} +In R:[ (4)

Average saturation deficit over the entire area
Sﬂt) is

E(t)=;‘—jSD(i,t)=—m(y +In R) (5)

where, | a,
_A—.',[n{(Kimn B,)

} ,a constant for the
basin. Equation (4) and (5) yield a relation between

Sﬁt) and SD (i,¢) at each single location .
. N _ a;
SD (i,t)= SD (t)+ m[}' m{-————(Ki - BJH (6)

Underlying the development of equation (6) is an
assumption that all points with the same
In (a, /K, tn p,) value are hydrologically similar ®.
Subsurface contributions to streamflow, Q(t) — flow
per unit area ® — can be derived from equation (6) as

0 =ee M
Considering lateral transitivity to be constant in a
block ®-9or subcatchment, then the key role for
hydrological similar condition is played by the
distribution function of topographic index. The
bitter fact is that higher frequency topographic
information contained in topographic index is lost as
the larger sampling dimensions of the grids act as
filter. This makes the hydrological similarity
condition accounting combined soil-topographic
index, in(q, /K, tan B,), to vary with the variation

in DEM resolution used. To overcome this problem,
this research has developed a scale invariance model
structure for topographic index.

(2) Influence of DEM resolution on topographic
index

Figure 1 shows the density function of the
topographic index at four different DEM resolutions
in Kamishiiba catchment (210 km? without taking
into account the scale effect. Distinct swift of
topographic index density function towards the
higher value is seen as the resolution of DEM gets
coarser. This is a clear indication of the lost of
higher frequency topographic information as the
larger sampling dimensions of the grids act as filter.
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Fig. 1 Effect of DEM resolution on density

distribution of topographic index.

Table 1 DEM resolution effect on topographic constant, X,
value in Kamishiiba catchment

DEM Resolution 50 m 150m 450m 600m 1000 m

Topographic constant A 6.076 7.423 9.222 9.622 10.353

Table 1 shows the distinct effect of DEM
resolution on topographic constant,

=L Iln(a./tan B,)» of Beven and Kirkby 7.
A M H H

Only available DEM data for most of the parts of
the world that covers ungauged basins of developing
and underdeveloped countries is that of 1km x 1km
grid resolution. Analyzing Fig. 1 and Table 1, we
can readily imagine the blunder in predicting
ungauged basins using coarse resolution DEM.

(3) Scale Invariant Model for topographic index
of TOPMODEL
A scale invariant model for topographic index of

TOPMODEL has been developed by combining two
parts of solutions as follows:
i) Resolution factor in topographic index

The density of the small contributing area is
higher in a catchment. It is observed that this smali
contributing area is entirely lost when the resolution
of DEM gets coarser. Figure 1 clarifies that higher
frequency topographic information contained in
topographic index is lost. In Fig. 1 the peak of
density distribution of topographic index for 50m
grid resolution DEM is at the topographic index
value 4.2 and the peak of density distribution of
topographic index for 1000m grid resolution DEM
is at the topographic index value 8.6. In fact the
smallest contributing area derived from a DEM
resolution is a single grid of the DEM at that
resolution. Thus area smaller than this grid
resolution is completely lost as the larger sampling
dimensions of the grids act as filter. But as we use
finer resolution DEM, the smaller contributing area
- that is the area of finer grid resolution is achieved.
From this point of view we introduced number of
sub grids N; (see Fig. 2) concept in topographic
index as shown in equation (8).
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Fig. 2 Sub grids within coarse grid resolution for introducing
resolution factor in topographic index.

Ci
S (R Ty
where 77 is topographic index. C; is the upslope
contributing area of the coarse resolution DEM and
W*; is the unit contour length of target resolution
DEM. N is the total number of subgrids within a
coarse resolution grid. 7 is a location in a catchment.

Figure 2 shows 9 subgrids within a coarse
resolution grid. The area of the coarse resolution
grid shown in Fig. 2 itself is the smallest
contributing area for that DEM resolution. When
this area of coarse resolution DEM is divided by the
number of sub grids (i.e. 9 in Fig. 2), area of a sub
grid as smallest contributing area for the target
DEM resolution is obtained. Moreover, in equation
(8), the unit contour length of coarse resolution
DEM, W, is replaced by the unit contour length of
targeted DEM resolution W#*; (see Fig. 2) to derive
the lost portion of the finer values of contributing
area per unit contour length.

The density distribution of the higher values of
contributing area per unit contour length is found
lower in case of finer grid resolution DEM than that
of coarser grid resolution DEM. This is the reason
for the topographic index derived from coarser
resolution DEM to swift towards the higher value
throughout the density distribution, not only at the
peak of the density distribution, than the
topographic index derived from finer resolution
DEM (see Fig. 1). Structure of equation (8) having
logarithmic function, proportionately pulled back
this higher topographic index density towards that of
finer resolution DEM.

If we consider resolution factor Rras :

®)

Coarse  DEM  Re solution w,
s = T arg e¢ DEM Re solution - F, )
then it is clear from Fig. 2 that
N, =R/ (10)
Equation (9) and (10) yield
W,R, =W* N, an

From, equation (8) and equation (11) resolution
factor is introduced in topographic index as:

C
71 = ln{(————)me o } 12)

ii) Fractal method for scaled steepest slope

The underestimation of slopes when using the
coarse resolution DEMs can seriously affect the
accuracy of hydrologic and geomorphological
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Fig. 3 Fractal method for scaled steepest slope at a location i
of the 3 x 3 moving window pixels.

models 9. To scale the local slope, we followed the
fractal theory in topography and slope proposed by
Klinkenberg and Goodchild ' and Zhang et al. 19
and developed a modified fractal method for
steepest descent slope.

a) Fractal method for average slope estimation

proposed by Zhang et al. 19

The variogram technique (statistical variation of
the elevations between samples varies with the
distance between them) can be used to calculate the
fractal dimension in a region when the log of the
distance between samples is regressed against the
log of the mean squared difference in the elevations
for that distance V.

The variogram equation used by Klinkenberg and
Goodchild 'V to calculate the fractal dimension of
topography is:

(z,-zf =ka 13)
where Z, and Z, are the elevations at points p and ¢,
dp, is the distance between p and ¢, £ is a constant
and D is fractal dimension. Topographic fractal
properties of equation (13) can be used to scale
slope as follows:

Z —-Z
( pd q)zadpq(w) (14)

P4

where « = k" is a constant. Because the left part
of the above equation represents the surface slope, it
can be assumed that the slope value S is associated
with its corresponding scale (grid size) d by the
equation:

S = ad"™? (15)
This implies that if topography is unifractal in a
specified range of measurement scale, slope will
then be a function of the measurement scale 10,
However, it is impossible to predict the spatial
patterns of slopes due to the single value of the
fractal dimension and the coefficient in the fractal
slope equation for the whole DEM. To overcome
this problem Zhang et al. 9 proposed that the
coefficient & and fractal dimension D of equation (15)
are mainly controlled by standard deviation (o) of the
elevation of the sub regions in a DEM and brought out
the regressed relations between « and D separately
with the standard deviation (o) of the elevation. In

deriving the regressed relation, Zhang et al. 19
considered the smallest sub area (window) to be
composed of 3 x 3 pixels. Hence elevations of nine
neighboring grids in the DEM are taken to obtain the
standard deviation of the elevation for a sub area.

It is found that the slope derived from the method by
Zhang et al. 19 tend to match only with the average
slope within the 3 x 3 moving window pixels of the
coarse resolution DEM but completely failed to take
into consideration of the steepest descent slope defined
as the direction of the maximum drop from centre
pixel to its eight nearest neighbors. Steepest descent
slope also known as D8 method has a significant role
in hydrological modeling that incorporates DEM. Thus
we propose a modified fractal method for steepest
descent slope.

b) Fractal method for steepest descent slope

In this research, a modified model for Fractal
method to account for the steepest slope change due to
change in DEM resolution has been developed which
is described in the following points:
bl) Unlike distance d of equation (15) be
represented by constant grid size, in every step
(location) in a 3 x 3 moving window pixels, this
distance ‘d” of equation (15) is provided as the
steepest slope distance (diepesr). Figure 3-A shows
the steepest slope distance (dyeepes) to be dx, dy and

Jdx? + dy” according to the direction of steepest

descent of the slope in X-axis, Y-axis and diagonal
axis DD respectively.

b2) It is found that there is not much variation in
standard deviation from high resolution DEM to low
resolution DEM in the same sub-area. Fractal
dimension D is related to standard deviation in 3 x 3
moving window pixels as per Zhang et al 1D.

D =1.13589+0.08452Ino (16)
b3) The fluctuations of the coefficient & values were
found very high from one local place to another in
comparison to D value in equation (15). Unlike the

method by Zhang et al. 10) (o values are derived
from standard deviation ¢ of the elevation in 3 x 3
moving window pixels), coefficient o values are
derived directly from the steepest slope (steepest
slope of the available coarse resolution DEM),
keeping the fact that steepest slope itself represents
the extreme fluctuation. The modified equation is:

S =a. d. P (17

steepest — “Psteepest™*steepest

As for example in Fig 3-A, where the steepest slope
is shown in diagonal direction, Gfeepesr at that
location i is given by

S,

steepest
(24

steepest = I-D

L/dx2 +dy? '
where dx and dy are the steepest slope distances of
the coarse resolution DEM in X-axis and Y-axis.
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Fig. 4 Spatial distribution of scaled topographic index applied to Kamishiiba catchment (210 km?). (a) topographic index distribution
using 1000m DEM resolution, (b) scaled topographic index distribution obtained from 1000m DEM resolution to 600m DEM
resolution, (c) scaled topographic index distribution from 1000m DEM resolution to 450m DEM resolution, (d) scaled
topographic index distribution from 1000m DEM resolution to 150m DEM resolution, (¢) scaled topographic index
distribution from 1000m DEM resolution to 50m DEM resolution, (f) topographic index distribution using 50m DEM

b4) While down scaling, the distance variation in
the target resolution DEM is made as per the
direction of the steepest slope in the coarse
resolution DEM. Hence in Fig. 3-B the down scaled
steepest slope (Sycqes) is shown in the same direction
to that of the coarse resolution DEM steepest slope
(Fig. 3-A). Considering Fig. 3-B, the down scaled
steepest slope (Sycareq) 1S given as

S d (1-D)

scaled = asteepesl scaled (1 8)

where digied = 1/AX2 +Ay2 in Fig. 3-B and Ax,

Ay are the steepest slope distances of the target
resolution DEM in X-axis and Y-axis respectively.
iii) Scaled topographic index distribution

By combining equation (12) and equation (18),
final scale invariant model for the scaled
topographic index which includes resolution factor
to account for the effect of scale in up slope
contributing area per unit contour length and a
fractal method for scaled steepest slope as an
approach to account for the effect of scale on slope
is given by equation (19).

ol
() s = "{W}

where, (TD);cq.qis the scaled topographic index and
(tanB;)r= Sscaeaof equation (18) which is the scaled
steepest slope by fractal method.

a9

Table 2 Topographic constant, A, value for scaled DEM from
1000 m grid resolution to finer grid resolutions in
Kamishiiba catchment

Topographic constant, A, value for scaled DEM from 1000 m grid resolution to

50 m target grid
resolution

6.474

150 m target grid
resolution

1.573

450 m target grid
resolution

9.11

600 m target grid
resolution

9.604

3. RESULTS AND DISCUSSION

The scale invariant model of topographic index of
TOPMODEL is applied to Kamishiiba catchment
(210 km?). Table 2 shows the scaled topographic
constant A from 1000m grid resolution DEM to
various DEM resolutions by applying the scale
invariant model. The down scaled values of A from
1000m grid resolution to finer DEM resolutions in
Table 2 are almost equal to the values of A in Table
1 derived from that fine grid resolution DEMs.

Figure 4, (a) is the topographic index distribution
using 1000m DEM. Figures 4 (b), (c), (d) and (e) are
the scaled topographic index distribution obtained
by using the scale invariant model from the same
1000m grid resolution DEM to 600m, 450m, 150m
and 50m grid resolution DEM respectively. Figure 4
(f) is the topographic index distribution using 50m
DEM. Distinct difference can be seen between
spatial distribution of topographic index (a)
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Fig. 5 Comparison of density function of scaled topographic index from 1000m grid resolution DEM to finer grid resolution DEM and
the density function of the topographic index at that fine scale in Kamishiiba catchment (210 km?).

and (f) that are from 1000m grid resolution DEM
and 50m grid resolution DEM. The spatial
distribution of topographic index displayed by (e)
has matched the existing reality displayed by (f) in
Fig. 4.

Figure 5 shows the perfect fit of density function
of scaled topographic index distribution from
1000m grid resolution DEM to various grid
resolution DEMs by using scale invariant model.
It is found that in the finer resolution range of DEM,
between 50m grid resolution DEM and 150m grid
resolution DEM where the slope obtained is more
precise and does not vary significantly, resolution
factor (Ry) alone played the dominant role in the
scale invariant model. Above 150m DEM scale,
effect of resolution on slope is found distinct.

4. CONCLUSION

According to the present research objective a
scale invariant model for topographic index has
been developed and its applicability has been
highlighted as a tool to help prediction in ungauged
basins in a realistic manner. This research has
developed concept of resolution factor to account
for the effect of scale in up slope contributing area
per unit contour length in topographic index and a
fractal method for scaled steepest slope as an
approach to account for the effect of scale on slopes,
which are combined to develop scale invariant
model of topographic index distribution. It is hoped
that the findings of this research seeks its
applicability as a tool to a wider range of boundary
as per the scale problems in hydrology and solution
approach is concerned.
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