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A linear stability analysis of the channel inception on bedload-dominated alluvial deltas is performed
with the use of the shallow-water equations and the Exner equation. At the downstream end of a delta i.e.
the delta front, there is a body of standing water, where water surface elevation of the water body
controls the flow depth at the delta front. The bedload transported beyond the front is accumulated on
the slope at the front, which causes the migration of the delta front. Upward-concave bed profile is found
in the one-dimensional base state. In the two-dimensional linear stability analysis, only negative growth
rate is found in all the cases. The absolute value of the growth rate increases with increasing the height
of delta front, which implies that deltas with smaller height of delta front are more stable. It is concluded
that bedload-dominated alluvial deltas are always stable. This result corresponds to the fact that fan
deltas are formed if sediment is sufficiently coarse so that bedload is predominant.
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1. INTRODUCTION

A delta is defined as an accumulation built by a
terrestrial feeder system into or against a body of
standing water such as a lake or sea. In a broad
manner, deltas can be separated into alluvial deltas
such as river delta and alluvial-fan delta, and non-
alluvial delta such as pyroclastic delta and lava delta
(Nemecl) 1990). Only the alluvial deltas are in the
scope of this study.

Under various situations, alluvial deltas form
themselves differently, which has been intensively
investigated by many geologists. In addition, there
is a large amount of study by hydraulic engineers
because sediment deposition around river mouths is
an important subject from engineering viewpoints.
Deltas also play important roles for the environment
because of its unique ecological resources. For
example, river delta provides abundant natural
conditions, resulting in the habitation for a variety
of creatures such as terrestrial animals, aquatic
animals and plants.

It is found that grain size fraction is a basic
terminology for the delta classification. Medium-
size, radial deep-sea fans in western Mediterranean,
Californian borderland and Alaska are found to be
sand-dominated, while most of large-size, elongate
ones such as Mississippi fan, Amazon, and Bengal

are mud-dominated (Table 2 in Einsele® 1996).
Therefore, suspended load might play an important
role of this differentiation. This motivates us to
investigate the characteristics of deltas in terms of
processes of sediment transport. In this study, only
bedload is taken into consideration as a first step for
the investigation so that the phenomenon of
bedload-dominated alluvial delta is well presented
by the model.

The evolution of incipient channelization of the
various types of geomorphology has been
investigated recently. Izumi and Parker” (2000)
performed a linear stability analysis to study
incipient channelization on hillslopes composed of
cohesive soil. Dey, Kitamura and Tsujimoto®
(2001) studied the erosional process of headcut by
experiments and numerical calculation. Izumi”
(2001) performed a linear stability analysis to
investigate the formation of submarine canyons.

Most of the previous analyses have dealt with
channelization in erosional processes. In this study,
a depositional process is studied in a bedload
dominated case. After a one-dimensional base state
solution is obtained, a two-dimensional linear
stability analysis is performed to obtain the growth
rate of the evolution of incipient channelization.

2. FORMULATION
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(1) Governing equations

Let us consider the flow on the alluvial delta
connecting to a large water body at its downstream
end. Fig. 1 shows our model configuration. We
assume that the bed consists of non-cohesive
sediment which is transported as only bedload.
When the transported sediment get across the delta
front, it is assumed to settle down on the slope at the
front, causing the migration of the delta. If the
water depth of the standing water is sufficiently
large compared with the flow depth, wave impact is
insignificant (Nemec” 1990). So, we neglect the
effects of wave and tide in this study. Since the
present analysis is devoted to the description of the
depositional surface evolving in response to sheet
flow, it motivates us to apply the St Venant shallow
water equations, which can be described by the
following equations:
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where tilde means the dimensional variables, ¥ and
3 are the streamwise and lateral coordinates

respectively, # and ¥ are the X and y components
of velocity respectively, # and Z are the flow depth
and the bed elevation respectively, 7, and 7, are the
of bed

respectively, p is the water density, and g is the
gravity acceleration.
The bed shear stress vector (7, ,7, ) is written as

¥ and § components shear stress

1
F.7,) = oC, @2 + 52 o @.9) )
where C;is a friction coefficient and assumed to be
a constant for simplicity in this study.
Time variation of bed elevation can be expressed
by the following Exner equation:
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where A, is porosity, g, and g, are the ¥ and
3 components of bedload transport rate, which is
expressed as

1
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where g is the absolute value of bedload transport

rate. When we employ the Meyer-Peter & Miiller

formula, it is expressed as
3
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Fig. 1 The model configuration of the alluvial delta.

where R, is the submerged specific gravity and 4, is
the sediment diameter.

When the Shields stress t* is much larger than
the critical Shield stress 7, , the above equation is
further simplified as

1
7-80""(R,ed. d, ®)
This analysis is a first step to investigate the
instability of the alluvial delta, so the understanding
of the basic mechanism of the problem is a top
priority. The simple form of (8) is used in this paper.

(2) Alluvial delta migration

If there is a constant sediment supply from the
upstream, there occurs a constant deposition at the
downstreamn end of the delta, which causes the
migration of the delta front at a constant speed. The
migration speed & is expressed as

@z
(1 - A’p Eds

where z,, is the elevation at the delta front, which

©)

g =

also can be assumed constant.

We assume this idealistic base state in order to
perform a formal instability analysis so that the base
state solution cannot be directly applied to real
deltas. However, the model is expected to describe
the essential characteristics of the phenomena
qualitatively. Moreover, the self-preserving
longitudinal profiles of one-dimensional delta have
been observed experimentally by Izumi & Tkeda®.

In the case that the alluvial delta is migrating in
the streamwise direction at a constant speed & , it is
convinient to introduce the coordinates moving with
the delta as follows:

~

X' =X-6t,f =t (10a,b)
where the asterisk indicates the moving coordinates.
When the curvature radius in the two-
dimensional case is sufficiently large, the circular
shape of delta front can be approximated to be linear
with enough accuracy. Thus, with the use of above
relations, the Exner equation (5) is rewritten as
E G #(5’13‘-’-—) ()
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ot ox"
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(3) Normalization
The following transformations are introduced in
order to nondimensionalize all the variables:

(f‘,y)=%(x,y), @, %) =U_(u,v) (12a,b)
f

. ~. (-4 )H?

(h,2)=H_ (h,2), 7" =—L—"t (12c,d)

f=c

L — O (12¢)
(1_A’p )H ¢

where U, , H, and J, denote the flow velocity,
flow depth and bedload corresponding to the

Froude-critical flow condition, which are expressed
as

g =

1/3

~2
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where g,, is flow discharge per unit width.

Introducing Egs.(12a-e) into Eqs.(1)-(3) and (11)
and reducing, the following normalized equations
are obtained:

1
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3. THE ONE-DIMENSIONAL BASE STATE

(1) Governing equations

When the flow is assumed to be steady and
uniform in the lateral direction, the time derivative
terms and the terms associated with the lateral
direction are dropped; thus, the governing equations
reduce

2
ua—u+%+a—z+u—=0 (18)
x dx dx h
uh =1 (19)
3
g (20)
ox  0x

After some manipulation, Egs.(18)-(20) yield the

following differential equations:
3
de o 1)

dx wu-u’+3u’lo

Table 1 The parameters using in the analysis.

Dgscription unit | Case 1 | Case 2
Water discharge, g, m¥s 1
Offshore water depth, Hs m 5 10
Delta front elevation, z m 4 9
Sediment diameter, d, mm 1
dh h
S - (22)
dx 3/c+h~h
dz 1du’
L4 (23)
dx o dx

In order to solve Egs.(21)-(23), we employ the
downstream boundary condition that water surface
is continuous at the interface between the river flow
and the standing water body. When the depth of the
standing water body is much larger than the flow
depth, the downstream boundary condition is
controlled by the water elevation of the water body,
and the non-dimensional downstream flow velocity
can be expressed as
I M

Uc (H off _st)

Since the equations (21)-(23) cannot be reduced
to be simple forms of exact solutions, we employ
the expansion method using the non-dimensional
migration speed o =u) /z, as a small parameter.

The second order approximation is the following:
U =uy —%”dsx +%2*{(1—-17)x + %‘xz}+ 0(c”) (25)

U

Uy, at x=0 24)

2

h=hy +%hdsx +%{(hi —hi)x+h—;3x2}+0(a3) (26)
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(27)
where uy and z; are the non-dimensional flow

velocity and bed elevation corresponding to the
downstream condition, respectively.

(2) Solutions of the base state

The variables in Table 1 are applied in order to
examine the one-dimensional base state solutions.
The difference between Cases 1 and 2 is the delta
front elevation z, which provides the variation of

the migration speeds. The migration speed & in
Case 1 equals to 21*10° m/s, while & in Case 2
give a small value and equals to 9*10° mys. Figs. 2-
4 show the comparison of non-dimensional «, & and
z as functions of x computed by three different
approaches: the first, second approximations and the
exact solution by numerical computation for Case 1.
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It is found that both u and z increase while A
decreases in the upstream direction. Fig. 4 shows the
upward-concave bed profile in contrast to the
downward-concave bed profile that appears in the
erosional process. The upward-concave profiles
imply that the bed slope is reduced from upstream to
downstream and the corresponding flow velocity
decreases, which causes the deposition of sediment
transported from upstream. This corresponds well to
various types of depositional phenomena such as
alluvial fan. Since the second approximation gives
the close results with the numerical computation in
the sufficient upstream length (x = 100 is around 23
km in dimensional value), the second approximation
is employed in the further analysis. In Fig. 5, the
comparison between Case 1 (lower z,, higher ) and
Case 2 (higher z,, lower o) is shown. It is found
that higher migration speed yields steeper bed
profile.

4. THE TWO-DIMENSIONAL PROBLEM

(1) Linearization
The following perturbation is introduced at the
delta front:

z =z, +ae“z,(x)cosky + O(a*) (28)
where subscript O and 1 means the base state and the
first order of the perturbation respectively, a, k and
w are the amplitude, wave number and growth rate
of perturbation, respectively. Correspondingly, the
other variables are expanded as

u =uy +ae”u, (x)cosky + O(a*) (29)
v = ae”v,(x)sinky + O(a’) (30)
h = hy +ae™h, (x)cosky + O(a?) (31)

Substituting the above equations into Eqs.(14)-(17),
at O(a), we have

w0 h 20(32)
1 h2 17

du, dh, dz, (2u,
Uy—F+ —+—=+|—+U,
dx dx dx ho 0
w0 e (33)
hO
du dh ' ’

hozx—l+uogl+h0ul +khgvy +ulhy =0 (34)
3ul duy 0% + Guguguy +kulv, +wz, =0 (35)

where prime denotes d/dx. Further manipulation of the
above equations yields
du;, 1 u, 2 ) , )
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dx C] ho ( 0 0""0 0 0 0)
3 Ohl 3 2.1
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Fig. 2 Profile of non-dimensional u: comparison between 1%,
2™ approximation and numerical computation for Case 1.
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Fig. 3 Profile of non-dimensional 4: comparison between 1%,
2" approximation and numerical computation for Case 1.
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Fig. 4 Profile of non-dimensional z: comparison between 1%,
2™ approximation and numerical computation for Case 1.

35 1 —Case 1
30 4. e ----Case 2
25
Z20
15
10 i
5 - : | ‘
100 -80 -60 -40 20 0

X

Fig. 5 Profile of non-dimensional z: comparison between Case
1 (higher o) and Case 2 (lower o).
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where C, = ohy —ui (o +3u,)
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(2) Boundary conditions

In order to solve Eqgs. (36)-(39) which is
composed of S variables uy, vy, A1, z; and o, five
boundary conditions are needed. Far upstream from
the delta front, the perturbations are assumed to
disappear; thus we have

u,=v,=h=2=0 as x—»-» (40)

The scrutiny of Egs. (36)-(39) reveals, however, that
if three of the above conditions (40) are imposed,
the fourth one is satisfied by itself. Thus, in reality,
only three independent boundary conditions are
specified by Eq. (40).

In the light of Eq. (28), z; must be normalized
so as to satisfy the following condition at the

origin:
zi=1at x=0 (41)
The condition at the downstream boundary of
the flow domain is preserved in the present
analysis. The downstream boundary, however, is
no longer located precisely at x = O due to the
perturbations. The following condition holds:
h+z= H—ﬂf—
H

c

at x =aye® cosky (42)

where y is a constant and the quantity aye® cosky
denotes the perturbed position of the delta front in
response to the perturbations Eqgs.(28)-(31).
Substituting Eqgs.(28)-(31) into (42) and reducing, at
O(a), it is found that

xXho +xzo +h+2, =0 at x=0 (43)

and the quantity of aye™ cosky can be described by

the difference of the migration speeds; thus

u’  9(at +aye™ cosky)

z ot
Expanding Eq.(44) and reducing, at O(a) in a it
is found that

at x=aye” cosky (44)

Bulu, wlz, (3ulu, upz
0”1 _ 021+( Q70 _ 020 X = wx (45)

Z, Z4 Zy z;
Therefore, substuting Eq.(45) into (43) and

reducing, the fifth boundary condition is obtained:

2 3 2.1 2
Uy uyz —3ugugz, + wzg
+h

3

Zg Zg(h(ly +2,)

vz ~uphy = 3ujugzy +wzg 0 (46)
N @+

Equations (36)-(39) have solutions satisfying the
boundary conditions (40)-(41) and (46) only for
particular values of w. It is apparent that we
cannot obtain the analytical solutions, so the
equations are solved numerically using the
relaxation method for two-point boundary value
problems outlined in Press et al.”
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Fig. 6 The growth rate w as a function of k for Case 1.
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Fig. 7 The growth rate w as a function of k for Case 2.
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Fig. 8 Plots of uy, vy, #; and z; for Case 1 and & = 10.

5. RESULTS AND DISCUSSION

(1) Stability from the perturbation

Figs. 6 and 7 show the growth rate w as a
function of wavenumber k for Cases 1 and Case 2
(higher z,, lower o) in Table 1, respectively. In
both cases, it is found that the growth rate w
approaches asymptotically to a constant negative
value in the range of large k, while we cannot
calculate the values of w in the range of small &
because of the rapid decrease of w. Growth rate &
decreases rapidly around k = 9 (wavelength L = 151
m.) for Case 1 and k = 4 (L = 340 m.) for Case 2.
Comparing the value of w between Case 1 (lower z4,
higher o) and Case 2 (higher z,, lower o), we found
that the growth rate w in Case 2 is higher than that
in Case 1, and the abrupt drop of the growth rate o
is seen in the range of smaller wave number k.
Since o =u), /z, and ug is unchanged in both

cases, we can conclude that higher z, provide
higher w. The profiles of uy, v, #; and z; for Case 1
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Fig. 9 Experiment on bedload-dominated fan.

with £ = 10 are shown in Fig. 8. All of them
decrease and approach to zero at the far upstream.

Though we try various parameters in the model,
it is always found that the growth rate o is negative
in any value of k. This implies that the bedload-
dominated alluvial deltas are stable to the
perturbation provided at the delta front.

(2) Roles of sediment transport processes

Fig.9 shows a fan delta formed in an experiment
performed by one of the authors in Tokyo Institute
of Technology, in which only bedload was
observed. In the experiment, the delta is observed
to develop concentrically keeping its round shape of
delta front. Even though shallow channels are
formed on the delta surface temporarily one after
another, they are unstable to disappear shortly. The
results obtained in this analysis correspond to the
fact that bedload-dominated deltas have a stable
front shape that tends to keep its parallel or round

shape. Therefore, elongate deltas described
subsequently cannot be formed with coarse
sediment.

Fig.10 shows the river mouth delta formed in the
Abashiri Lake, which is a typical example of the
elongate delta as is the case with Mississippi delta.
At the river mouth, the accumulation of huge
quantities of sediment both suspended and bedload
allows the delta front to extend into the lake®. It is
suggested that the suspended sediment might be an
important factor of the channel inception of the
elongate delta, which should be further studied in
the future.

6. CONCLUSIONS

A linear stability analysis is performed to
investigate the incipient channelization on the
deposition process of bedload-dominated alluvial
deltas with the use of downstream-driven theory. In
the one-dimensional base state, the bed profile
presents upward-concave characteristic in contrast

Fig. 10 River mouth delta in Abashiri Lake.

to the erosion processes of the previous researches,
which the downward-concave bed profiles were
found. Then, the linear analysis indicates that the
bedload-dominated alluvial deltas are always stable
or it can say that the plain migration propagates
without the presence of the channels at its
downstream. The phenomenon of bedload-
dominated fan is well presented for the case of our
present model. It also suggests that the presence of
the suspended sediment should be an essential factor
to cause the channelization in the alluvial deltas.
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