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The Smoothed Particle Hydrodynamics (SPH) method is put forward to simulate dam-break and
wave-breaking problem. The Lagrangian form of governing equations are solved by a two-step split scheme
and the basic SPH formulations are employed to discretize the gradient and divergence operators in the
equations. The SPH model is robust for tracking free surfaces by particles without numerical diffusion. The
pressure characteristics are analyzed based on computations. It is shown that the dynamic pressure is very
strong in the early stage of dam-break and wave-breaking but quickly settles down in the later stages.
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1. INTRODUCTION

Free surface hydrodynamic flows are of industrial
and environmental importance but they are difficult
to simulate because the surface boundary conditions
are specified on an arbitrarily moving surface. The
MAC” and VOF? methods are two of the most
flexible and robust approaches for treating such
flows. However, in both the MAC and VOF methods,
the Navier-Stokes equations are solved on a fixed
Eulerian grid. Problems of numerical diffusion arise
due to advection terms in the N-S equations and the
numerical diffusion becomes severe when the
deformation of the free surface is very large.

The smoothed particle hydrodynamics (SPH) is a
pure Lagrangian method originally developed for
astrophysical computations” and has later been
extended to model a wide range of hydrodynamic
problems. The basic concept of SPH is that a particle
is fundamental in the Lagrangian description and the
motion of a continuum can be represented with
arbitrary accuracy by simulating the advection of a
large number of such particles. Through the use of
integral interpolants, the dependent field variables
are expressed by integrals which are approximated
by summation interpolants over neighboring
particles. Thus each term in the N-S equations can

be represented by SPH formulation. Incorporated
with initial and boundary conditions, the whole
equations are solvable. The incompressibility of the
fluid is satisfied by keeping the particle density
equal to its initial value through a pressure Poisson
equation.

In this paper a SPH model based on MPS
solver?” is applied to dam-break and wave-breaking
problems. The initial SPH scheme is fully explicit.
When dealing with fluid flows, incompressibility
was realized through an equation of state so that the
fluid is assumed to be weakly compressible. In this
case, a large sound speed has to be introduced,
which could easily cause problems of sound wave
reflection at the boundary and lead to computational
instability. In this paper, a real incompressible SPH
model is proposed based on MPS solver in that the
pressure is not a thermodynamic variable obtained
from the equation of state, but rather by way of
solving a pressure Poisson equation derived from a
semi-implicit algorithm of pressure projection. Thus
both computational efficiency and stability have
been greatly improved. Another advantage of the
proposed SPH model lies in that it can obtain highly
stable pressure fields. Many other Lagrangian
approaches, including the MPS method, are not free
from the stochastic behavior of calculating points or
particles, which also brings the fluctuation of the
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pressure. However, SPH formulations employ
analytical kernel to represent integration, as well as
gradient and divergence with higher resolution,
superior to the corresponding MPS interaction
models. Thus SPH method will provide a useful tool
to analyze dynamic pressure properties for the
Benchmark problems.

2. GOVERNING EQUATIONS

The governing equations for SPH model are the
mass and momentum conservation equations written
in Lagrange form as
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where p = fluid density;
P =pressure; g = gravitational acceleration and v

= time; u = velocity;

= kinematic viscosity.

The SPH computation consists of two steps, i.e.
prediction and correction, similar to those employed
in the MPS*® method. The prediction step is an
explicit integration in the time domain without
enforcing incompressibility. Only the viscous and
gravitational terms in the Navier-Stokes equation (2)
are used and an intermediate particle velocity and
position are obtained. At this moment the
incompressibility is not satisfied, which is reflected
by that the particle density deviates from the initial
values. Thus a second corrective step is applied to
adjust fluid densities at the particles to initial values
prior to the time step. In the correction, the pressure
term is used to update the particle velocity obtained
from the intermediate step. The pressure for
enforcing incompressibility is derived from the mass
conservation Equation (1) and obtained by solving a
pressure Poisson equation. The relevant processes
are summarized as follows:

Prediction
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r. =1, +u,Af %)

where u, and r, = particle velocity and position at
time 7; w. and r, = intermediate particle velocity
and position; Au, = changed particle velocity
during the prediction step and Af = time increment.

Correction
Au,, = ——I—VI’,+1A1‘ (6)
U, =u, +Au., (7
r,=r+ £ll’—t“’—“)Az‘ (8

where Au.. = changed particle velocity during the
correction step; Q. = intermediate particle density
between the prediction and correction; P, and
u,,, = particle pressure and velocity of time 7 +1;
and r, and r,,, = positions of particle in time ¢ and
t+1.

Pressure Equation
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where p, = initial constant density at each of the
particles. This equation is analogous to the
formulation in the MPS method in that the source
term of the Poisson equation is the variation of
particle densities, while it is usually the divergence
of intermediate velocity vector in finite difference
methods.

3. SPH FORMULATIONS

The SPH formulations are employed to represent
the summation, gradient, divergence and viscosity
(Laplacian) of all particles in the governing
equations. Each particle carries a mass m , velocity
u and other properties, depending on the problem.

The fluid density at particle a, p, is evaluated

by
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where @ and b = reference particle and its
neighbors; r, and r, = position of particles; and W

= interpolation kernel and # = smoothing distance,
which is set twice the initial particle spacing in the
computation. Kernels W can assume many different
forms and the use of different kernels is the SPH
analogue of using various difference schemes in
finite difference methods. The kernel can be
differentiated analytically without the use of grids. If
the grids are fixed in position the SPH equations are
identical to finite difference equations with different
forms depending on the interpolation kernel. By
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balancing the computational accuracy and efficiency,
the kernel based on the spline function and
normalized in 2-D is adopted in this paper”.

The gradient of the pressure is expressed as
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where the summation is over all particles other than
particle a and V W, = gradient of the kernel
taken with respect to the positions of particle a.

Similarly, the divergence of a vector u at particle a
can be formulated symmetrically by
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The Laplacian is formulated as a hybrid of a
standard SPH first derivative with a finite difference
approximation for the first derivative as
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where P, =P — P, andr, =r, —r,.

The viscosity term is formulated by
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where [ = pV is dynamic viscosity.

4. FREE SURFACE TREATMENT

In SPH model free surfaces can be easily
identified by particle densities. Since no particle
exists above the free surface, the particle density
will decrease on the surface. A particle is regarded
as a surface particle if its density fluctuation is over
1% below that of the inner fluid. A Dirichlet
boundary condition of zero pressure is given to this
particle. Unlike wall particles which are also
calculated in the pressure Poisson equation, there is
no such a need for these surface particles.

5. DAM-BREAK COMPUTATIONS

Dam-break flows are an important practical
problem in the civil engineering and their prediction
is now a required element in the design of a dam and
its surrounding environment. In this example, one

rectangular column of water in hydrostatic
equilibrium is confined between two vertical walls.
The water column is 1 unites wide and 2 unites high
and gravity is acting downward with unit magnitude.
At the beginning of the computation, the right wall
(dam) is instantaneously removed and the water is
allowed to flow out along a dry horizontal bed.
Experimental data® are available for validation
against the SPH calculations. At beginning the SPH
fluid particles are initially arranged in a regular,
equally-spaced grid, with boundary particles added
to form the left-hand wall and bed. In the simulation
the time step Af is continuously adjusted for
computational efficiency based on the Courant
constraint, i.e., the maximum particle displacement
during one time step should be smaller than a part of
initial particle spacing. In order to account for the
influence of the turbulence, the viscosity in
simulation is taken to be 1000 times larger than that
of the constant laminar value, i.e., v= 10> m%s.
Totally 5000 SPH particles are involved in the
computations.

Fig. 1 shows the comparison of the time variation
of the leading edge from the left wall with
experiments from Martin and Moyce®. The relations
between the normalized time T =t(g/a)"'? (where
a is initial dam height) and leading edge X =x/qa
are in good agreement, validating the accuracy of the
SPH.
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Fig. 1 Experimental and numerical leading edge against time of
dam-break flow

In order to further demonstrate the robustness of
the SPH, the time sequences of instantaneous
particle snapshots, total pressure and dynamic
pressure contours are given in three columns in Fig.2
(a), (b) and (c), respectively. In the figure the length
scale has been normalized by a, the time scale by
1/(g/a)"'* and the pressure scale by pga. It is seen
from the particle snapshots in the first column that
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SPH can well reproduce the formation of a bore in
the flow front near the bottom, which is due to the
advantage that the SPH can clearly describe the free
surfaces without numerical diffusion. From the total
pressure contours in the second column of Fig. 2, it
is shown that at the early stage of the dam-break
flow at time #(g/a)’? = 0.35, the pressure
distribution inside the fluid deviates significantly
from hydrostatic and the maximum pressure is only
half of the hydrostatic value. This is due to the large
downwards particle acceleration after the sudden
release of the right dam. As time goes on, the initial
large acceleration decreases and the pressure
gradually becomes uniform, until a bore develops
downstream as seen from time #(g/a)"? = 0.7 to
1.05. Meanwhile, the magnitude of the pressure also
gradually increases until the pressure distribution is
almost hydrostatic. The above pressure development

patterns have also been reported in other literatures”.
Further examining the dynamic pressure
distributions in the third column of Fig. 2, it is much
more clear that the dynamic pressure is very strong
and globally distributed in the whole flow domain at
the early stages of dam-break. Also with time
elapsing on, the dynamic pressure becomes locally
concentrated near the initial dam-site and the
amplitude of the negative pressure is only 15% of its
maximum value.

Thus, a useful conclusion can be drawn for
practical purposes from this point. The shallow
water equation, which is based on the hydrostatic
assumption and uniform velocity over the depth, is
only applicable at the later stages of the dam-break
flow when a bore fully develops downstream. It will
cause significant errors if applied at the very early
stage of dam-break.
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. 2 Time sequences of particle snapshots (first column), total pressure (second column) and dynamic pressure (third column) at

time 7(g/a)"'* (2) 0.35; (b) 0.7; and (c) 1.05, respectively
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6. WAVE-BREAKING COMPUTATIONS

The solitary wave-breaking near the beach is also
an important practical problem relevant to tsunami
hazard mitigation in coastal regions. In this section,
the laboratory breaking solitary wave data of
Synolakis® is used as another good test for the SPH
model. The wave broke and ran up on a mild 1:20
slope. SPH simulation reproduces the experiment in
which the still water depth was d = 0.21 m and the
incident wave height H /4 was 0.28. Approximately
10000 particles are employed in the computation.
The time step is also automatically adjusted during
the computation to achieve efficiency and the
viscosity V is taken to be 10° m%/s during the wave
breaking and 10*m?/s during the subsequent runup
processes. The computed time sequences of
instantaneous particle snapshots, total pressure and

dynamic pressure contours are given in three
columns in Fig. 3 (a), (b) and (¢), respectively. Also
in the figure the length, time and pressure scales
have been normalized as in the dam-break
computations and only the upper part of the flow
over the slope is plotted. In the second column of Fig.
3, the experimental data of surface profiles are given
for comparison with the SPH computations. It is
seen that the general agreement between the two is
satisfactory, further verifying the accuracy of SPH.
The SPH particle snapshots in the first column in
Fig. 3 clearly reproduce the time sequences of
wave-breaking, turbulence bore formation and
running up a slope. In the second column, it is shown
that when the wave breaks at time #(g/d)"* = 20,
the pressure in the still water in front of the breaking
front deviates significantly from hydrostatic and is
about two times that of the hydrostatic value.
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Fig. 3 Time sequences of particle snapshots (first column), total pressure (second column) and dynamic pressure (third column) at

time #(g/ d)” 2 (a) 20; (b) 30; and (c) 45, respectively. Experiemtal data are given in the second column
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This is due to the reason that the fluid particles in the
still water in front of the moving bore are
undergoing the processes of being static to moving
forward and upward. Thus the vertical acceleration
of particles is always positive, which increases the
pressure there.

However, during the subsequent bore running up
from #(g/d)"* =30 to 45, the pressure returns back

to be hydrostatic everywhere. The same findings
have also been reported by Lin et al.” in his VOF
simulation of solitary wave breaking using
Reynolds-averaged N-S equations. The dynamic
pressures in the third column of Fig. 3 describe this
phenomena more clearly in that during the
wave-breaking, the maximum positive dynamic
pressure is almost equivalent of the hydrostatic one,
but it decreases rapidly and totally disappears during
the subsequent running up. Thus another useful
conclusion can be drawn from the computations.
The shallow water equation, which assumes
hydrostatic distribution and has been widely applied
to study coastal wave mechanics, is accurate enough
for analyzing wave propagating, shoaling as well as
later running up processes, etc. It is only
inapplicable within a narrow region in front of
breaking front, where the influence of dynamic
pressures is too strong to be neglected.

7- CONCLUSIONS AND SUMMARY

The paper presents a SPH particle model to study
the dynamic pressure characteristics in dam-break
and wave-breaking. The model is effective in
tracking free surfaces by particles. It is shown that
during the early stages of dam-break and
wave-breaking, the pressure deviates significantly
from hydrostatic and the dynamic pressure is the
same magnitude as the hydrostatic value. However,
the pressure distributions recover to almost be
hydrostatic during the later stages of dam-break and
wave-breaking after the formation of a turbulence
bore. This wverifies that the widely used
shallow-water equations can be applied to analyze
such problems with enough accuracy.

Finally it should be noted that the computed
pressures are quite stable in the above two SPH
simulations. However, many other particle methods
have the reported problems of pressure instability,
since the pressure is calculated based on particle
information and sensitive to particle positions and
disorder. In comparison, relatively stable pressures
have been obtained by SPH. This is due to that SPH
uses analytical kernel to represent integration, as

well as gradient and divergence in the governing
N-S equations. The numerical results can better
approximate exact solutions of the relevant problem
if large numbers of particles are employed. Thus the
computed field variables are much more smoothed
and stable than those obtained by other particle
approaches.
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