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A mathematical optimization model was constructed in order to determine the optimal monthly operation
of a multipurpose water resource system composed by a single reservoir and a set of wells. The system is
responsible for the water supply of Matsuyama City in Ehime Prefecture. The objectives are to find the
optimal monthly allocation of water for city supply and irrigation and to maintain the reservoir storage as
close as possible to a given target. The model was solved by Quadratic Programiming and its characteristics
and implementation are presented. Simulations for different conditions are carried out and the results show
that optimization models can serve as good supporting tools for the reservoir operators.
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1. INTRODUCTION

In regions where water resources are scarce the
ever-increasing demands require a more efficient
management and search for evermore elaborated
plans for the operation of the systems. Water
resource management systems frequently use
mathematical optimization models to identify the
best set of plans and policies that provide a fair and
economical  distribution  of  water?PY,
Optimization models are formulated in terms of
determining values for a set of decision variables that
will optimize (maximize or minimize) an objective
function subject to constraints. The objective
function and constraints are represented by
mathematical expressions as functions of the
decision variables. For the solution of optimization
models several algorithms are available from the
operations research area, which includes linear and
nonlinear programming, dynamic programming,
simulation, search techniques and others.

In this study, an optimization model is developed
for the monthly operation of a multipurpose water
resource system located in Ehime Prefecture, Japan.
The objective function is chosen to be quadratic and

the solution procedure is thus based on Quadratic
Programming (QP).

2. STUDY SYSTEM AND OBJECTIVES

The study system is responsible for the water
supply of Matsuyama City, capital of Ehime
Prefecture, which lies on the northermn part of the
island of Shikoku, the smallest of the four major
islands of Japan (Fig. 1). Matsuyama has a mild
climate with an average temperature of 15.6 °C and
average annual precipitation of 1,333 mm (Fig. 2).
There 1s much rain in June and only a little in January
and the city receives little snow and few typhoons.

The system is composed by a multipurpose
reservoir named Ishite River Dam and a set of 26
wells located around the Shigenobu River as shown
in Fig. 1. Ishite River Dam is located approximately
10 km to the northeast of the center of Matsuyama
City. It is a multipurpose ferroconcrete gravity dam
which controls the over flow of Ishite River and
provides approximately half of the supply of
Matsuyama. Besides, the reservoir is used for
irrigation of the northern area of the river, which
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Fig. 1 Location and layout of the system.

extends over the cities of Matsuyama and Hojo and is
place for cultivation of tangerine, grape, peach and
other citrus fruits. Shigenobu River contains mostly
underground water which is used for the other half of
the Matsuyama water supply through the set of wells.
After the water is taken from the dam and wells, 1t is
transferred to the correspondent surface or
underground water treatment plant from where it is
distributed to the city. There are two surface and five
underground water treatment plants.

The city of Matsuyama suffers periodically with
problems originated from the scarcity of water. One
example is the current year of 2002, in which there
has been a lack of rainfall over the region. Fig. 3
shows the comparison of average rainfall and the
measures for 2002 (until beginning of September) at
Ishite River Dam, whose water level reached 46.6%
of the capacity in September. Moreover, the
population of the city has been increasing
substantially and so has the necessity of a better
development and management of the water resources
in the region.

In the present work, the main objective of the
operation is to determine the monthly allocation of
water from the reservoir and the set of wells that best
satisfy the demands for water supply and irrigation.
Another aim is to maintain the reservoir storage as
close as possible to a given target storage in order to
not let it decrease considerably. Besides, the
distribution of water should not compromise the
operation of the system violating its constraints and
leading it to a collapse.

3. OPTIMIZATION MODEL

Since the objective is to make the allocation of
water as close as possible to the demands, the
objective function of the optimization model can be
written by the sum of deviations of releases from
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Fig. 2 Average precipitation and temperature in Matsuyama.
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Fig. 3 Average precipitation and measures for 2002 until
beginning of September.

their targets. One more term is added to assure that
the reservoir storage will not decrease significantly.
Constraints are composed by continuity equation,
limitations of the components of the system, etc:
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where ¢ is the index of the month; &, o, o are
coefficients that measure the relative importance
given to each of the reservoir operation purposes;

Q! is the total water allocated for city supply from

sup

the dam (Q%,) and wells (Q",; ) in month f; T, is
the demand for city supply in month # Q] is the
allocation for irrigation in month #, 7, is the

demand for irrigation in month ;, V., is the reservoir

tor

storage in month #; T, 1is the target reservoir

stor

storage; V.

stor

is the initial storage; V,,- is the inflow

to the reservoir in month #; ¥, is the amount of

max
rel

is the total capacity of the surface water treatment

water that might spill from the weir in month #; O

max

plants; Q% is the total capacity of the underground

water treatment plants; Q. syvamaps 1 the amount

o 1s the

irr

of water available in the wells in month ¢, O

capacity of the irrigation system; V.2 is the dead

stor
storage of the reservoir; and V" is the capacity of
the dam.

4. SOLUTION PROCEDURE

To solve the optimization problem (1)-(12) a
program  was implemented in  MATLAB
environment and solved by one of the procedures that
compose the MATLAB Optimization Toolbox®. The
selected procedure is able to solve quadratic
programming problems of the following form:

minimize f(x)= —;—xTHx+ng (13)
xeR”
subject to
x=b, i=L...m,
A . (14)
4 -x<b, i=m,+1L....m

where H and A are matrices, and g, b, and x are
vectors. A; refers to the i-th row of the m-by-» matrix
A

The solution method uses an active set strategy,

similar to that described by Gill et al.7), which finds
an initial feasible solution by first solving a linear

programming problem. An active set Ay s
maintained, which 1s an estimate of the active
constraints (i.e., which are on the constraints

boundaries) at the solution point. Ax is updated at
each iteration k, and this is used to form a basis for a
search direction d,. Equality constraints always

remain in the active set Ax . The search direction, d,
is formed from a basis, Z, whose columns are

orthogonal to the estimate of the active set Ay (ie,
AcZ . =0). Thus, a search direction, which is formed

from a linear summation of any combination of the
columns of Z;, is guaranteed to remain on the
boundaries of the active constraints.

The matrix Z; is formed from the last m-/ columns
(! is the number of active constraints and / < m) of the

. . —T
QR decomposition of matrix Ay :

(15)

A new search direction dy, where d; is a linear
combination of the columns of Z, (d, =Z,p ), is
sought that minimizes g(x). The vector p is found by
substituting x for d, =Z,p in the quadratic
function, as below, and finding its minimum:

1
f(p)=5pTZfHka+gTka (16)

The full description of the procedure is found in the
toolbox manual®.

5. IMPLEMENTATION

Taking a particular point w, a quadratic function
can be written as follows:

£ =7 (w)
oW HWE-wW (7)
FIFT (w)(x - w)
where H(w) and Vf(w) are the Hessian matrix and

the gradient of function f at point w, respectively.
H(x) and Vf(x) are defined as below:
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Since flw) is a constant, minimizing f{x) is the
same as minimizing the sum of the second and third
elements of the right-hand term of expression (17).

For problem (1)-(12), we have implemented the
variables as in Table 1.

Table 1 Implementation of the variables.

Main variables  Auxiliary variables
T 1
qup xl Qrel - x37
N N _
QSUP X2 Qe = Xug
1 O
Qirr - x13 Qwell - x49
N _ N
O, =Xy Oyt = X0
1 _ [
Vsmr - X25 V"Pi” - x51
N _ N
I/slor - x36 VSP”] - x72

Function F in (1) has thus the following general
form:

x, =T) : xp, =712 ’
F(x):al(——a—«—lT1 de"‘j +...+a1[—————-12T12 d””j

dem

2 2
x, =T, | X =1 |
+a2[¥13T1 W] +‘_‘+a2[’C24T12 n’r] (20)

r

2 2
+a3(x25-TslorJ +”_+a3[x36 _TsmrJ
Tstor Tstor

Setting all elements of vector w equal to zero, we
find the following Hessian and gradient of function F
at w:

b . @1)

VF(w) = 22)

B T2

irr

_ 205
T

‘StOV
B 2a,
T

stor |

Thus, problem (1)-(12) was implemented in the
MATLAB procedure with the objective function

. 1 . .
given by ExTH(w)x+VFT (w)x, where x is as in

Table 1 and H(w) and VF(w) are given by (21) and

(22), respectively. The constraints (2)-(12) were
transformed into matrix 4 as in (14).

6. RESULTS AND DISCUSSION

This section illustrates some results obtained from
simulations of the operation of the system by using
the optimization model developed.

The data of inflow to the reservoir (V) and water
available in the wells (O avamasir) for the year of
1995 were used for the simulations. The target values
of demands and reservoir storage were assumed as in
Table 2. Table 2 shows the average daily demands
for city supply and irrigation. The monthly demands
were defined as the sum of the average daily
demands for each month. The capacity of the dam
was chosen to be up to the flood control level, which
means a volume of 8,500,000 m®. The dead storage

-376 -



5000000 9,000,000

4,500,000 6,000,000

4,000,000 000,000

&~ 3500000
000,000

=
2
8
g
8
g8

000,000
2500000
000,000
2,000,000

Water Amount {m
Reservoir Storage (m’)

000,000
1.500,000

1,000,000 £00,000

500000 000,000

[

1

Time (month)

wevstor—Qrel  Qwsll oo Qirr

Fig. 3a Optimal storage and allocation (simulation #1).

Table 2 Target Values of Daily Demands and Reservoir
Storage Utilized.

Jul-Sep: 160,000 m*/day
Oct-Jun: 140,000 m*/day
May-Sep: 19,000 m*/day
Oct-Apr: 7,000 m*/day
7,500,000 m*

Demands for city supply

Demands for irrigation

Target reservoir storage

of the reservoir is 2,200,000 m’. The initial storage in
the dam (V) was set as the maximum storage

(capacity) for all the simulations.

Fig. 3 shows the results considering the normal
inflow for the year of 1995 (named here simulation
#1). Fig. 3a displays the behavior of the reservoir
storage and the optimal releases over the year. Fig.
3b considers only the results for city supply and
shows how much the total allocation from the dam
and wells achieve the target demands. Fig. 3¢ regards
the results for irrigation and also shows how the
releases meet the demands. In this operation, priority
was given to meeting the demands for city supply
and irrigation instead of maintaining the reservoir
storage high. This was accomplished by setting o; =
o =2 and a; = 1 in the objective function (1). For
this situation of normal inflow all the demands were
met appropriately.

Simulations considering a shortage of water were
carried out by using the year of 1995 with lower
inflows to the dam. For the months of May, June and
July only 30% of the normal inflows were utilized
(these months were the ones with higher inflows in
1995). In the other months (January to April and July
to December) inflows of 80% of the normal values
were assumed.

Fig. 4 presents the results for the first operation
considering the shortage (simulation #2). For this
case, the same priority was given to all the objectives
by using o = v = o = 1. From Fig. 4b 1t is observed
that the demands for city supply could not be reached
in February, March and June. The demands for
irrigation in January were also not met (Fig. 4c).
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The results from the second operation considering
the water shortage are shown in Fig. 5 (simulation
#3). Now, priority was given to city supply (¢, = 3)
and irrigation (o= 2). o5 was kept equal to the unity.
Because of that, the demands were met better than in
the previous simulation. However, the reservoir
storage could not be maintained very close to the
target storage.

The above results show how the performance of the
system can be analyzed for the same year under
various conditions. Reservoir operators can make use
of optimization models to do these types of
simulations that can serve as screening tools in the
decision making process.

7. CONCLUSIONS

The analysis of complex water resource systems
may involve a high number of decision variables and
constraints and optimization models may help in
providing operating alternatives which can be used
by the water resource planners to assist their decision
making.

In this work, an optimization problem based on
quadratic programming was applied to the operation
of a multipurpose system. The implementation of the
objective function as a quadratic function that could
be used by a QP procedure was illustrated.
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Several simulations were performed with
operations for the same horizon (year of 1995)
considering different scenarios. The same kind of
modeling can be done by the reservoir operators in
order to estimate the behavior of the system under
different future situations and accordingly decide the
best policy to be taken.
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