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Flows past curved hills have been computed by the numerical method based on the boundary-fitted
coordinate and the Cartesian coordinates to investigate the difference and demerits of two different
approaches. Calculation results at high Reynolds number laminar flow using central difference scheme
for convective terms lead to pressure oscillation when the geometry is approximated by rectangular
coordinate and results in stable calculation when the geometry is approximated by boundary-fitted grid
or by using upwind scheme. LES calculation results with upwind scheme at higher Re predicts similar
trend in both grid systems. For calculations of flow past complex boundary, where generating boundary-
fitted grid is almost impossible or difficult, rectangular coordinate approximation can be good

alternative.
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1. INTRODUCTION

Recent advancements of both computers and
numerical methods have made it possible to
calculate turbulent flows of various kinds.
Calculation of complex three-dimensional flows in
natural enviornment and in complex machineries is
becoming within the range of readily accessible
computers’”. One of the tasks yet to be
accomplished in hydraulic and atmospheric
applications is to device an effective way of
representing complex natural topography. Various
methods are developed and tested; the present
authors have developed a few different ways of
dealing with complex boundaries. First method is to
use the curved coordinate system that follows the
shape of the boundary. Once a good grid is
generated, boundary conditions are set at exact
locations and the flow over it can be calculated with
relative ease. One problem with this method is that
when the boundary becomes irregular or not
smooth, it becomes impossible to generate a grid. In
such a situation, usually, one has to resort to other
methods like a multi-block approach and local
refinement and generating a grid with good quality
becomes difficult. Furthermore, transformation of
the governing equations results in a complex system
of equations with many geometric parameters
implying high computational overhead. The second
method is to use the rectangular grid in Cartesian
coordinates”™”. In this method, generation of grid
is trivial and arbitrary shapes can be represented.

Because of these advantages many new methods of
using rectangular grids for complex shapes with
various boundary treatments are proposed®”. One
disadvantage of using the rectangular grid  for
arbitrary shape is that either the position of the
boundary becomes approximate or the boundary
conditions are applied at interpolated points.

In computing flows over complex topography or
similar complex geometry, it will help if relative
performance and accuracies are known for these
different methods. In the present work, we compare
calculation of flow past smooth curved hills with
small and unfixed flow separation using both
boundary-fitted coordinate and the Cartesian
coordinates. First, basic performance of each
method is examined in low-Reynolds number
laminar flow, and then accuracies and stability are
examined at high Reynolds numbers. Then the
methods are evaluated when applied to large-eddy
simulation (LES) of higher Reynolds number
turbulent flow in the same geometrical region. The
test calculations for the turbulent case are performed
for the cases in which detailed experimental data are
available.

2. NUMERICAL METHODS FOR
RECTANGULAR GRID (RC)

Here the methods using the rectangular grid are
described. They are for computing the flow of
incompressible fluid of density p and kinematic
viscosity v. The governing equations are the
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conservation equations for mass and momentum
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Here u; is the component of the velocity vector in
the Cartesian coordinate x;. We also use the notation
(x,3,2) for (x;,x3x;3) and (u,v,w) for (u,usus). These
equations are discretized, with variables arranged in
staggered system to apply conveniently the
pressure-coupling algorithm. Fig.1 shows the grid
arrangement and the points where the boundary
conditions are applied. Discretization of convective
terms are done by a third order upwind differencing,
UTOPIA or by conservative second order central
difference scheme®. Viscous terms are discretized
by second-order accurate central differencing
scheme. HSMAC iteration procedure is used for
calculating pressure.  Time advancing of the
momentum equations is done by a second-order
accurate  explicit, Adams-Bashforth  method.
Performance of the code for laminar and turbulent
flow past a bluff body and turbulent flow over
curved geometry have been assessed earlier”'?,

3. NUMERICAL METHODS FOR
BOUNDARY-FITTED GRID (BFC)

In order to solve the same incompressible flows
in boundary-fitted grid, equations (1) and (2) are
transformed in general coordinates and they are
given as
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Here x; is the Cartesian coordinate fixed in the
physical space, and &, is the general coordinate used
in the computation. J is the Jacobian of the
transformation matrix from x; to &, and U, is the
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Fig.1. Grid arrangement; boundary conditions are
enforced at locations marked by filled symbols

contravariant component of the velocity vector
multiplied by J’, which represents the volume flux
in the direction perpendicular to the surface &, =
constant. For laminar flow, the last term will
disappear and for turbulent flow, which is solved
assuming the eddy-viscosity formulation for the
subgrid scale stresses, the eddy viscosity v is added
to v as explained in the next section.

Discretization in BFC using staggered variable
arrangement 1s very insufficient involving complex
coding and additional computational loads.
Therefore the method based on the colocated
variables is used here. The discretization procedure
follows the fractional-step method with the Crank-
Nicolson implicit differencing for the diagonal
elements of the viscous terms and the second-order
Adams-Bashforth scheme for the off-diagonal
viscous terms and the advective terms. The spatial
differencing of the nonlinear advective terms is done
by either the second-order consistent scheme'" or
UTOPIA and the rest are done by the second-order
central differencing scheme. Other details of the
BFC code and validation for benchmark problems
are the same as Ref.12.

4. SUBGRID STRESS MODEL FOR LES

When the above methods of flow solution are
used in Large Eddy simulation (LES) of turbulent
flows, all wvariables in the equations are the
respective filtered quantities of the instantaneous
flow. The additional stress called subgrid-scale
stress Ry appears in the momentum equations. If it is
modeled by conventional eddy-viscosity model,
which is given as,

k 8, -2, (6)
where, £, is the subgrid turbulent kinetic energy, &;
is the Kronecker delta, vi; is the subgrid eddy
viscosity and Sj; is the strain tensor, then v; needs

to be added v in the momentum equations. Vg is
modeled by the Smagorinsky model
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where, A is the grid size defined by the geometric
average of the grid spacings in three directions,

(AxlezAxB)V}, u; is now the spatially filtered

velocity. Cs is Smagorinsky constant, which is
chosen as 0.13. In the case of BFC, coordinate
transformed equations of (6) and (7) are used.

S. TEST FLOW PAST A CURVED HILL

The flow configuration considered shown in
Fig.2 is that past a model isolated hill. It is a smooth
two-dimensional topography, defined by an
analytical expression
ZG 1
H {x/nH)'
ground at horizontal position x, and H is the height
of the hill and x is the horizontal distance from the
center of the hill. The steepness of the hill is
determined by the value of n. For n=2.8, the largest
slope angle is 20 degrees and the flow in this case
contains a small separate bubble at low Reynolds
numbers. For n=2.3, the largest slope is 25 degrees
and the flow is considerably different with larger
flow separation. These are the two test cases used
for the present comparative test runs.

, where z; is the elevation of the

(1) Computational domain and grid

The computational region covers the test flow
shown in Fig.2. The computational domain extends
from about 8.5H upstream and 14/ downstream of
the hill of 25 degrees. For the hill with maximum
slope angle of 20 degrees, it covers the region from -
10.5H to 17H. The calculation domain extends 7H
in the cross stream-wise and 4H in the spanwise
directions. In the streamwise direction, points are
closely spaced within 4H on either side from the hill
summit. In the cross stream-wise direction, the first
point from the ground is placed at 0.03H near the
bottom of the wall, stretched up to 0.5H and then
compressed up to 1.5H and then placed non-
uniformly until the top boundary. In the spanwise
direction in either grid system, grids are uniformly
spaced. The total grid size is 128x21x61 and
140x21x61 respectively for 25-degree and 20-
degree slope hills.

In the case of BFC, the grid is generated by
transforming the physical space on the rectangular
computational space by an elliptic equation and
generated coordinates fit the actual boundary.
Calculation domain, distance of the first grid point
from the ground and grid size is the same as that of
in RC.

R 6 8
x/H
Fig. 2. Flow configuration

(2) Calculation cases

Table 1 gives the list of cases and keys used for
laminar flow calculation. Reynolds number Re, is
defined by the oncoming velocity U,,rand maximum
hill height H. For turbulent flow condition, LES
calculations are performed for the maximum slope
of 25 degrees hill only, for the Reynolds number of
13,000, and the results are compared with available

experimental data'.

(3) Boundary conditions

Boundary conditions are enforced at inflow,
downstream, top and bottom boundaries. Periodic
conditions are enforced for the spanwise direction.
Slip conditions on the top boundary and nonslip
boundary conditions on the ground surface are
applied. At downstream, radiation boundary
conditions are used. At the inflow plane, uniform
flow and experimental mean velocity profile
available at the nearest streamwise station is given
for laminar and turbulent cases, respectively. For the
turbulent flow case, the nonslip condition on the
ground surface may not be appropriate since the
viscous sublayer is not quite resolved by the present
grids. But for examining the general numerical
schemes, the nonslip condition will provide a better
basis for comparison.

Table 1. Calculation cases details for laminar flow

condition
Maximum Re Grid Key used
slope angle arrangement

RC H201R

20 100 BFC 11201B

RC H251R

25 100 BFC H251B

500 RC H255R

BEC H255B

6. RESULTS AND DISCUSSION

(1) Comparison in calculation of laminar flow
First, laminar calculations are performed by
both RC and BFC for flow past the hill of maximum
slope angle of 25 degrees at low Reynolds number
of 100 in order to verify the basic numerical
procedures. Then calculations at higher Reynolds
number of 500 are performed. There is no exact
solution for flows of this type and these cases are
run to assure that the basic methods are correct. For
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(b) streamlines

Fig. 3. Calculation results for laminar flow past hill of maximum slope of 25 degrees
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(c) Profiles of streamwise velocity; solid line - Miyashita'®,
filled square — H201R, open square — H201B

Fig. 4. Calculation results for laminar flow past

hill with maximum slope angle of 20 degrees

all these cases, convective terms are discretized by
second-order conservative schemes. Calculations are
run  with non-dimensional time increment of
At=0.001H/U,,r and the results are compared at the
same non-dimensional time 7=40H/U,;: The
calculated mean-flow spanwise vorticity distribution
and streamlines by RC and BFC are shown in Fig.3.

Fig 4(b) Streamlines

At low Re=100, results calculated by both grid
systems for all the cases agree well with each other.

For higher Reynolds number of 500, we see
differences in the calculated results. Small
oscillations appear in the plot of spanwise vorticity
calculated by RC grid. It has been pointed out'?
in the calculation of flow past a bluff body similar
oscillation appears also, when the cell Reynolds
number becomes large and the central differencing
is used for convective terms. This phenomenon can
be suppressed by using an upwind differencing,
which appears to be necessary for stable calculation
of turbulent flows at much higher Reynolds numbers
when performed on Cartesian coordinates.

In order to validate the numerical methods with
UTOPIA scheme, which is known to introduce
numerical viscosity, calculations are performed for
the hill with maximum slope angle of 20 degrees at
Re=100, and compared with numerical calculation
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(d) Profiles of time averaged streamwise velocity; symbolds — Expt, solid line — RC, dashed line - BFC

Fig. 5. Calculation results for turbulent flow past hill of maximum slope of 25 degrees

of Miyashita'®. Fig.4(a) presents a comparison of
the transverse vorticity, and good agreement is
seen. Streamlines obtained by RC and present BFC
grids are compared in Fig.4(b) with those by Ref.16.
Miyashita’s calculation is two-dimensional and
much denser grid of 260x70 is used and the
numerical accuracy is considered to be better.
Results agree very well although the recirculation
flow is calculated slightly weaker in both RC and
BFC. Fig.4(c) presents a comparison of the profiles
of streamwise velocity component u/U,, along
several streamwise stations. The agreement is
generally good as expected from the comparison of
the streamlines. These mean that RC calculation
with an appropriate upwind scheme produces good
results

(2) Comparison in turbulent flow calculations

Flows in engineering and environmental
applications are turbulent at much higher Reynolds
numbers over more general boundary. We take the
same geometry and examine the performance of the
two methods of RC and BFC when applied in the
LES calculation of turbulent flows. The flow at
Reynolds number of 13000 has been measured"” for
maximum slope angle of 25 degrees. The mesh size
is the same as that is used for laminar case. With
this mesh, the first point from the ground near the
top of hill is about 20 viscous units and hence the
wall flow is not resolved. In such case, the wall
model such as the wall function method is needed
but in the present calculation, a straightforward no-
slip condition is applied.
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The velocity profile at the inflow plane of the
calculation is adjusted such that it agrees with the
experiment at x//{ = -4. In the case of calculation
using RC, computation using second-order
conservative central differencing for convective
terms diverged; hence, calculation is performed with
UTOPIA scheme. BFC code is run with UTOPIA
scheme too for comparison purpose. Calculation is
run initially for 40,000 time steps before taking
averages over the next 40,000 time steps.

The calculated mean-flow spanwise vorticity
distribution and streamlines are compared in Fig.5
(a) and Fig.5(b). It is seen that the overall flow
patterns calculated by both methods are similar.
Small-scale disturbances, however are seen in the
results of RC. These are considered to be due to the
approximated boundary positions. In order to see the
details of these disturbances, instantaneous
streamwise vorticity distributions are shown in
Fig.5(c). It shows that calculation by RC shows
considerable three-dimensional features, but the
BFC results do not. The profiles of time averaged
velocity component U/U,.; along specified
streamwise  stations computed wusing both
rectangular and body-fitted grid and experimental
results are plotted in Fig.5(d). At x/H=0 calculation
shows the development of the boundary layer and
the maximum velocity is drastically under-
predicted. Both calculation results show a large
recirculation region downstream of x/H=2, while
experimental results show no separation. As
explained before, the present calculation does not
resolve the viscous sublayer. No wall model is used
and the turbulence at the inflow plane does not exist.
These are the reasons for not representing the
boundary layer development correctly and not the
grid representation. The main point is that in either
grid system of representing the geometry, overall
LES calculation results show the same trend.

7. CONCLUSIONS

Flow past curved hills has been computed by the
numerical methods based on the boundary-fitted
coordinate and the Cartesian coordinates to evaluate
the merits and demerits of the two different
approaches. Calculations are performed at low and
high Reynolds number laminar flows to validate the
numerical methods. While the calculation using
central difference scheme for the convective terms
leads to pressure oscillation when the geometry is
approximated by rectangular grid, results are stable
when the geometry is represented by a boundary-
fitted grid or by using upwind scheme. At higher Re
for turbulent flow condition, LES calculation results
by with UTOPIA scheme for the convective terms

shows similar trend in both grid systems. Hence,
when calculation of flow past natural topography or
complex geometry or open-channel flows with
deforming free surfaces or impossible in generating
BFC, is to be performed, rectangular coordinate
approximation of the geometry with stability
assured by upwind scheme for the convective terms
is a good alternative and simulation by this method
captures the flow features.
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