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For the large-scale 2D and quasi-3D groundwater flow numerical simulation based on FEM, spatial
discretization scale has significant influence on the result of simulation. A large element size may result
in inappropriate local water balance, and then lead to spurious oscillation. Although Zhang et al. (2001)
showed the criterion on “time step” to avoid the spurious oscillation for the fully implicit quasi-3D
groundwater flow finite element scheme, the criterion of “spatial scale” against spurious oscillation in
quasi-3D groundwater flow finite element solution has not been given. In this paper, the criteria to select
spatial scale L for the 2D and quasi-3D groundwater finite element schemes are derived based on Zhang
et al. (2001), and the effects of spatial scale on spurious oscillation solutions in the finite element

solutions of 2D and quasi-3D groundwater flow models are discussed using two examples.
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1. INTRODUCTION

A number of quasi-3D groundwater flow numerical
models using FEM have been applied to multi-aquifer
groundwater resources management at different scale.
Medium- and small-scale models are used for local
groundwater management, and large-scale models are
used mostly to address issues related to regional or
basin scale management. However, for the large-scale
quasi-3D groundwater flow simulation based on FEM,
spatial scale has significant influence on the result of
simulation. A large element size may perhaps result in
inappropriate local water balance ?"¥, and then lead
to spurious oscillation.

In the 1970’s, the spurious oscillation problem
had received attention by Neuman et al.” ? and
Fujii’. It was shown that when storage mass matrix
is non-diagonal, if the maximum principle is to be
preserved, the time step A¢ must not be too small.
Wood" discussed spurious oscillation in the 4-node
finite element scheme of the unsaturated flow
equation, and gave temporal scale criterion to avoid
spurious oscillation.

More recently, Chen and Ewing” carried out an

analysis on the stability and convergence of finite
element method for 2D reactive transport in
groundwater on basis of the maximum principle, and
proposed a mixed finite element method without
spurious oscillation. Lal® used Fourier analysis to
evaluate numerical errors of 2D groundwater flow
model, and discussed impact of temporal and spatial
scale on numerical errors. However, in all above
papers, spurious oscillation analyses are defined by the
2D saturated and unsaturated groundwater flow
problems. For quasi-3D groundwater flow model,
although Zhang et al.” showed the criterion of “time
step” to avoid the spurious oscillation for the fully
implicit quasi-3D groundwater flow finite element
scheme, the criterion on “spatial scale” against the
spurious oscillation has not been given.

In this paper, the mixed finite element discretizations
of quasi-3D groundwater flow model are proposed,
and the stability analyses of the discretizations in the
case of time weighting factor 8 being equal to 1
and 0.5 are carried out based on the maximum
principle.

Secondly, the criteria on selection of spatial scale
L to avoid spurious oscillation for the 2D and quasi-3D
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Fig. 1 Schematic diagram of two-layered aquifer system

groundwater finite element schemes are derived

when time weighting factor 6 is equal to 1 and 0.5.

Especially, in the case of time weighting factor is
equal to 0.5, Neuman’s result is corrected.

In the last section, two examples of 2D and
quasi-3D groundwater flows are presented to verify
the criteria of spatial scale, and effects of spatial
scale on oscillation solutions in the finite element
solutions of 2D and quasi-3D groundwater flow
models are discussed.

2. QUASI-3D GROUNDWATER FLOW
MODEL AND DISCRETIZATION

(1) Quasi-3D groundwater flow model

In general, the continuity equation of unconfined
groundwater flow in a multi-aquifer system is
nonlinear. However, if ratio of drawdown to
saturated thickness is less than 20%, then for a
nonlinear free-surface model the linear contribution
is anywhere between 75 and 100% of the
drawdown due to pumping. In other words, the
linear approximation to some nonlinear models is
sufficiently accurate®. Therefore, a two-aquifer
system as shown in Fig.1, may be described by
following linearized equations.

a) For unconfined aquifer the flow is described by:

TN ‘ oh )
oy LY
ay)+m,( A T

where A, H are hydraulic heads in the phreactic and
confined aquifers; u, 7; are storativity and

o k. 2
Zm D+ 2
ax( 1ax)+ay(1

transmissivity in the unconfined aquifer; m’, & are
thickness and hydraulic conductivity of the
semi-pervious layer; w, is sink and source per area
in unconfined aquifer.

b) For confined aquifer the flow is described by:

9 . H. 3 H_ K oM )
Ly e H =85
aX(2ax)+ay(zay)+m,( )+ wy >

where S is storativity in the confined aquifer; T, is
transmissivity in the confined aquifer; w; is sink
and source per area in confined aquifer.
(2) The finite element scheme with time
weighting factor

In order to discretize Eq.(1) and Eq.(2) in space,

1~6: Nodal numbers being adjacent to node i.
L : Side length of equilateral triangular element

Fig.2 Subdomain divided into equilateral triangular elements

triangular elements for each aquifer are adopted.
The finite element meshes for all aquifers are
identical to each other. Application of Galerkin
method together with finite differences in time leads
to the following matrix equations.
a) For the unconfined aquifer

P, [6h !+ (1-0)h* - R o (HF —n*TT)

X X h k+1 h*

+(1-6)H" -h R ————=W, 3)
b) For the confined aquifer

P[6H ! + (1-6)H - R,[o (0" - H )

Hk+l _ Hk

+(1-6)(h* —H*)+F, =W, 4

where 6 is a time weighting factor satisfying
0<6<1, Aris time step, and k indicates the
number of time step. If the total number of nodes in
each individual aquifer is N, then h* , H* are the
N-dimensional vectors of nodal head values at time
t; in the unconfined and confined aquifers, and h*"! |
H*'' are the same vectors at time ¢, =, +Ar. In

addition, P,, P, are NxN symmetric positive
semi-definite  conductance matrices in the
unconfined and confined aquifers; R,, R, are
NxN diagonal leakage matrices; F,, F,
are Nx N symmetric storage mass matrices in the
unconfined and confined aquifers. For any element
e, P, P, Ry, Ry, Fy, F, may be written as:

TC‘ 4
Pf =—L-Cf,Pf = Tzecf
44 44
1 4€
Rf <R = )
Ae‘ue AE’SC
Ff = C,.F =——C
YT Pt ¢t

where A° represents the area of the triangle e, and the
total number of elements e is M. 7,75 represent
transmissivities of element e in the unconfined and
confined aquifers. u°, 5°are storativities of element ¢
in the unconfined and confined aquifers. In which

blbl +aG blb/ +Cicj bzbm +Cim 2 11
C=|bby+ae;  bb+eg  bb,+e,|, Co=[1 2 1] (6)
bbutcCy bibytcic,  bbt+ag 11 2

As shown in Fig.2, if the coordinates of node i, j,
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m are employed, then the terms in Eq.(6) associated
with element e are given by

bi=y;=Vm, C; =X =Xy
bj:ym—yi’ Cj=Xm =X (7)
by =y;—¥;, Cm =X; =X

3. THE CRITERION ON THE SELECTION
OF SPATIAL SCALE

(1) Spatial scale criterion for quasi-3D finite
element scheme

For simplicity, the study domain is divided into
equilateral triangle elements with side length L, as
shown in Fig2. For confined aquifer, the
discretization of Eq.(4) becomes:

6 6 6
©-a Y B -6 Y 1 (1-0+ oY HE —6HE) - Bo[(Y HA ! vomF )
j=1 j=1 j=1

6 6 6
~ QL H e+ -0 HE +6HF) (X hE +6rf))

=1 j=1 j=1
=120(Hf " ~ H) ®)
2 2.0
where a=L3 g Lk )
8T2At 8T2m

According to Eq.(8), head #/” of node 1 at time
t,,, can be written as

1 6 6
S e

H = =
4K

J=1 J=1

6 6
+AFHF + BTN nE 4 BEIRE + BYY p¥ 4 BERf) (10)

j=1 j=1
where
AN =60+ po+0), 4 =0-0-po
k (11a)
4?:1—6—ﬁ+,39+a, A =60+ Bo+a~1-p)
k+1 _ k+l _
and Bi =P8, 5 . oh0 (11b)
B =B(1-0), B =6f(1-6)

The Maximum Principle for the parabolic Eq.(1)
and Eq.(2) states that if there are no sources or sinks
in the interior of the study region, the value of the
hydraulic head H in the interior of the region must
lie between the maximum and minimum values of H
on the boundary of the region at t=0°" ¥. This
principle is then used for the discretized equation.

Quasi-3D groundwater flow is composed of
horizontal and vertical flows in two directions.
Hence, on basis of the above Principle, #*' is a

weighted mean with positive weight factors of water
heads (#u!, 1¥, Hf 1" 4" ) at its neighboring nodes
in time-space, and hence there cannot be a local
maximum in the interior of the time-space region,
i.e. no spurious oscillation® .
S B .

The weighting factors of 5™ wf*! n% 4 in Eq.(10)
are positive, and the sum of the weighting factors on
the right-hand side of Eq.(10) is 1, that is:

1 K+l ko, ok k+l | pkitl k| pk
W(Mj +64; + 47 +6B; +B +6B; +B/)=1 (12)
]

Hence the weighting factors of H5*', % HF have to
satisfy the following criteria:
K+l
AT =0-a-p6>0
Af =1-6-+p0+a>0
AF =6 +Bo+a-B-1)>0

(13)

Neuman® indicated that Eq.(4) is unconditionally
stable when 6 > 0.5. Especially, when 6 =1, Eq. (4)
is called fully implicit form, which corresponds to a
forward difference scheme in time; whereas 6 =0.5
corresponds to Crank-Nicholson scheme. However,
according to Eq.(13), we found that Eq.(4) is not
unconditionally stable as what Neuman has claimed
in the cases of 6 =05and 9=1. The fact can be
shown as follows.

a) When 6=05, from Eq.(13), the following
conditions can be obtained,

a<z(1-h)
a>L(B-1
o>+ (1+B)

Eq.(14) is impossible to be satisfied with any value
of B, that is to say, spurious oscillation solution may
perhaps appear in Eq.(4). Wood” also obtained similar
conclusion, i.e. oscillation solution may perhaps occur
in the 2D unsaturated groundwater finite element
scheme wheno =0.5.

The reason is that since storage matrix F, is
non-diagonal and the third term in right-hand side of
Eq.(4) includes both implicit and explicit parts, the
coefficients of implicit and explicit parts in Eq.(8)
are not equal to 0.5 when 6=0.5 That is to say,
Eq.(8) does not correspond to Crank-Nicholson
scheme. It implies that Neuman® neglected the effect
of non-diagonal matrix F, on the weighting factors
of implicit and explicit parts of Eq. (4)”.

b) When 6 =1, according to Eq.(13), the following
conditions should be satisfied,

{a<1—ﬁ

14

(15)

Substituting Eq.(9) into Eq.(15), the criterion on
the selection of element size L, to avoid the spurious
oscillation solution in the finite element scheme of
confined aquifer flow model, can be expressed as,

8T \m’At
Atk +pm” (16)

where the subscript ‘CA’ represents ‘confined aquifer’.
Similarly, for unconfined aquifer, the criterion of L

for finite element scheme can be obtained,

8Tym’

a7

where the subscript “UA’ represents ‘unconfined aquifer’.
Considering Eq.(16) and Eq.(17), we can obtain

a>0

Loy <

LUA <
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the criterion of spatial scale L to avoid the spurious
oscillation for the quasi-3D groundwater flow finite
element scheme. That is

T EE a9
where the subscript ‘Q3D’ represents ‘Quasi-3D
groundwater model’.

Eq.(18) includes two criteria of unconfined and
confined aquifers at spatial scale, and it states that a
value of spatial scale L which is larger than that is
prescribed by the criteria would imply that spurious
oscillation occurs.

LQ3D max < min(

(2) Spatial scale criterion for 2D finite element
scheme

When hydraulic conductivity k” of semi-pervious
layer reduces to zero, ie. f =0, the quasi-3D
groundwater flow model is converted to 2D
groundwater model. From Eq.(8), /" of node i at

time ¢,,, alsocan be calculated by

Hk*l_‘ 1
i 7 er6a

6 6
1 N rrk+1 v
{U—o) Hj +(1LHJ» +06041; §
J=1 Jj=1

Based on the maximum principle, the weighting

(19)

factor of H%™ satisfies the following condition,
(1-a)>0 (20)
Substituting of Eq.(9) into Eq.(19), the criterion
on the selection of spatial scale L to avoid spurious
oscillation for 2D groundwater flow finite element
scheme is obtained as

Lp < 8T§At 1)
where the subscript 2D’ represents ‘two

dimensional groundwater model’.

Eq.(18) and Eq.(21) indicate that when As is
given, relatively small numerical scheme width L to
avoid spurious oscillation, which satisfy the
criterion (18) or (21), should be adopted.

Eq.(16)~(21) were derived using equilateral
triangle finite element grids. However, for irregular
triangle finite element grids, spurious oscillation
also can be approximately judged by the criteria”.

4. VERIFICATION OF SPATIAL SCALE
CRITERION AND DISCUSSION

Usually, the calculation area is firstly divided
considering hydrogeological information, and then
Aris chosen. However, Ar of groundwater model is
often given in the integrated surface-subsurface water
modeling. The reason is that Ar of flood routing is
small but not in groundwater modeling. Querner'”
indicated that in order to combine the stream routing
model and groundwater model, groundwater model use
often time steps of 1 day to as much as 10days. In this
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Fig.3 Domain and meshes for simulation study (from Kinzelbach, 1990)
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Fig. 4 Results with different L when Az =100s. Lines O and @
are two examples of spurious oscillation when L’ =509.9m,
412.3m, which exceed the theoretical Hmit

case, therefore, the selection of element size is important
to avoid oscillation.

The following examples are presented to verify the
criteria (18) and (21), as well as to analyze effect of
spatial scale on stability of the schemes. The first
example is used to check the spurious oscillation
criterion (21) for 2D groundwater problem, and
exhibits a comparison between result of FEM and the

“analytical solution. The second example is a quasi-3D

groundwater flow simulation of Kofu basin to verify
criteria (16), (17) and (18), and to analyze impact of
spatial scale on oscillation solution of quasi-3D
groundwater flow finite element scheme.

(1) Effect of element size on the oscillation for 2D
groundwater flow finite element scheme

A 2D numerical test from Kinzelbach' is used to
verify the criterion (21), and to analyze the influence
of spatial scale on oscillation solution. In the test a
pumping well is located at the center of upper- and
down-boundary, and the node A for illustration is
located at down-boundary. Fig.3 shows the location of
well and the illustration node A.

The unconfined aquifer has a constant transmissivity
of 0.1m%s and a storativity of 0.001. A uniform initial
water level of 50m at each node and constant pumping
rate of 0.5m’/s are assumed. In addition, it is also
assumed that the water level remains (50m) along the
right- and left-hand boundary. The domain was divided
into 35 nodes and 48 triangular elements.
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Fig. 5 Subdivided meshes using dotted line at x

For example shown in Fig.3, on the basis of
Eq.(21), if Ar is equal to 100s, then theoretical

limit of element size L is 282.8m around node A, i.e.

in order to avoid spurious oscillation, element size
should be smaller than 282.8m. However, the
maximum side length 7’ of elements around node
A is 509.9m, it is larger than the theoretical limit. As
a result, the solutions are unstable (line @ in Fig.4).

To avoid oscillation solution, we subdivide element
around node A using dot line, as shown in Fig.5. When
x=500m, the length L’ is 509.9m. In this case, mesh
in Fig.5 is same as that in Fig.3 [’is greater than
theoretical limit of 282.8m, spurious oscillation occurs
(Fig.4). If the mesh around node A is contracted along
with dot line x, the spurious oscillation will decrease
with the reduction of x. For examples, if x=400m,
then L’ =412.3m, oscillation solution is smaller than the
solution of 1'=509.9m, once x=250m i.e. L' =269.3m
(it is smaller than the theoretical limit), spurious
oscillation will disappear. The results for £’=509.9m,
412.3m and 269.3m are shown in Fig.4.

(2) Effect of element size on the oscillation for
quasi-3D groundwater flow finite element scheme

In order to verify equations (16), (17) and (18), a
quasi-3D groundwater flow model based on FEM is
applied to Kofu basin with area of 63.8km’. The
thickness of the unconfined, confined aquifers and
semi-pervious layers are 40, 38 and 20 m respectively.
The study area was divided into triangular finite
element network with 74 elements and 51 nodes shown
in Fig.6. Element sizes were chosen based on research
report of Nippon Koei CO., LTD. and CTT engineering
CO., LTD'" ) Two rivers flow from the northeast to
the southwest (Fuefuki river), and from the north to the
south (Ara river) with the lengths of 10.8 km (Fuefuki
river), 9.7 km (Ara river), respectively.
a) Calculation conditions

(a) 25m/d and 20m/d of hydraulic conductivities for
the unconfined and confined aquifers are assumed,
respectively. The conductivity of semi-pervious layer

is1.0x10™* m/d, and the storativities of the unconfined

Mountain
40 39

N 31 38

24 30

<7

>

>
/ Fuefuki River

A Well; 24~40: Nodal numbers; ® ; Observed well.
L : The maximum side length of elements around node 40

JoATY BIY

Fig. 6 Study area subdivided into triangular grids in Kofu Basin
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Fig. 7 A spurious oscillation example at t=15d with L,=1463m
(i.e. Ly, exceeds theoretical element size limit) in unconfined
aquifer and head contour of confined aquifer.

and confined aquifers are 0.05 and 0.025, respectively.

(b) The initial head of 256.0m for the unconfined
aquifer at each node is assumed. The piezometric head
of the confined aquifer at each node is 255.6m, and the
precipitation and pumping water are set to zero.

(c¢) Fuefuki river and Ara river are assumed with
constant head boundaries. The upper boundary closing
to mountain is assumed to be impervious boundary.

(d) Constant pumping rates of 0.5m’/s, 0.1m’/s
from the unconfined and confined aquifers are
assumed at node 31, respectively.

b) Effect of element size

For above quasi-3D problem, if time step Ar of
15days is given, according to Eq.(16) and (17), the
spatial scale limits of unconfined and confined
aquifers are 1448.2m and 1958.3m, respectively, that
is to say , the allowed element size (Lospmax) to avoid
oscillation is 1448.2m. However, for mesh in Fig.6,
Ly is equal to 1463m at nodes 40 and 30, and it
exceeds Loipmax. As a result, the oscillation appears in
the unconfined aquifer in the area of symmetrical
nodes 40 and 30 adjacent to well 31, but no
oscillation occurs in the confined aquifer (Fig.7).

The approach to overcome above numerical difficulty
is to subdivide the elements around node 31 by the
dotted line shown in Fig.8, and taking L, < 1448.2m.

Fig.9 gives different results at node 40 using the
meshes in Fig.6 (L,,=1463m) and Fig.§ (L,=1130m)
with Ar=15days. It is evident that when large element
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Fig.10 Unconfined water level contour at t=15d with L,=1130m

size L,=1463m (it is greater than Lospmax) 1S applied,
the oscillation occurs in the numerical simulation
process. If the element size decreases, and taking L,
< Lgspmax, for example, L,=1130m, the numerical
solution is stable at node 40 (Fig.9). Fig.10 also
shows that no oscillation solution appears on the
whole of study area when L,,=1130m.

5. CONCLUSIONS

On the basis of above analyses, this study leads to
the following conclusions:

1) The spatial scale problem to avoid spurious
oscillation for 2D and quasi-3D groundwater flow
finite element schemes were mathematically
analyzed, and then the spatial scale criteria to avoid
oscillation solution for 2D and quasi-3D
groundwater finite element schemes were discussed
and proposed in the case of 6 =0.5andg =1.

Especially, in this study Neuman’s result was
corrected, i.e. when 8 =0.5, quasi-3D groundwater
flow finite element scheme does not correspond to
Crank-Nicholson scheme, the scheme may perhaps
lead to oscillation solution.

2) From Eq.(18) and Eq.(21), it is shown that the

element size have significant influences on the
calculated results of 2D and quasi-3D groundwater
flow models, which may perhaps result in
inappropriate local water balance, and lead to
oscillations. In practice, if A is given, relatively
small element size L should be selected for quasi-3D
and 2D groundwater numerical simulations.

3) As demonstrated in two examples for 2D and
quasi-3D models, the spatial scale criteria of (16),
(17), (18) and (21) are valid for controlling spurious
oscillation problems.
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