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A multifractal model is used to derive the hourly rainfall distributions from those observed
at daily scale for a number of rainfall series observed near Tokyo. With these distributions a
cascading model is used to derive a multifractal fields which has similar scaling properties as the
original rainfall series. Synthetic hourly rainfall series are generated based on these multifractal
field. The results are verified with numerous comparisons with original hourly rainfall distributions.
It is proved that the adopted method can produce an accurate representation of hourly rainfall
distributions using only daily rainfall as source data.
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1. INTRODUCTION

Rainfall data, of hourly or higher resolutions are
required for many real world water resources engi-
neering problems, related to diverse fields: urban
storm drainage, soil erosion and response stud-
ies of small watersheds to name a few. High-
resolution data acquisition has been an expensive
task; at least until recently and hence, reposito-
ries of such data are severely limited both in num-
ber and available duration in many parts of the
world at the present day. However, daily rainfall
series of considerable length are widely available
for many locations, including those of developing
countries. This situation has made it beneficial
to device means to estimate high-resolution rain-
fall distributions from those observed at a much
lower resolution.

Except for a several ad-hoc methods re-
lated to stochastic models (Pathirana, et al.l))
and using exponential distribution within a
day (Tanimoto?), almost all of the scal-
ing models proposed in recent literature use
scaling theories based on scaling described
by fractals and multifractals. (Lovejoy and
Schertzer®) Olsson?,Svensson et al.y ) Since the
fractal based models adopts the discontinuity
in distributions into the theory (rather than as
exceptions as practiced in traditional continu-

ous mathematics), they are strongly favoured to
model rainfall, which by nature is discontinuous,
to some degree in spatial domain and to a much
larger degree in the temporal domain.

While there are numerous attempts to estab-
lish rainfall as a multi-scaling process only a few
reported cases exist, where the specific problem
of deriving the distribution at hourly scale using
observations made at daily level was attempted
(Ngugen and Pandey®). However, the practi-
cal significance of such studies are limited, from
the viewpoint of the application in the real-world
problems, unless the complete cycle of analysis
and modelling of (daily) rainfall as a multifrac-
tal process, establishing hourly intensity distri-
butions, generation of synthetic (hourly) rainfall
series and verification with actual observations
made at hourly scale. Not only the distributions
of intensities and standard time series properties
must match but also the properties specific to
rainfall series, such as distribution of wet and dry
periods at various scales should be agreeing.

This paper covers all the above aspects. While
the reader is referred to (pathirana, et.al.”)) for
detailed process of multifractal analysis and mod-
elling of rainfall time series, sufficient details on
the methodology have been given in the following
sections. The prime focus of this article is on the
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generation of synthetic rainfall time series and the
comparison of those with the real observations.

2. THEORY

The intensity distribution of a multifractal field
can be expressed as,

P(gx 2 X) ~ A0 1)

where A is the non-dimensional scale obtained
by dividing the largest scale of interest T by the
scale t. ¢ is the normalized field. v is a scaling
exponent and c(y) is known as the codimension
function which takes the following form for fields
generated by a multiplicative cascade process (see
Fig. 1) (Tessier, et al.%))

o — Oy +4)" as1
) { Chexp (%——1) a=1 (2)

(for0 < a<?2)

where 1/a+1/a’ = 1. C; and «a are multifractal
model parameters. Fields with 0 < a < 2 are gen-
erated by Lévy-stable probability distributions.

3. ANALYSIS OF THE OBSERVED
RAINFALL

The following method has proven to give bet-
ter results with rainfall series with practically
available precisions and durations (pathirana,
et.al.”): First the eqation 1 is rearranged in the
following form by introducing a constant b.

Once the value of the constant b is determined
(see pathirana, et al.”) for details), this equation
makes it possible to calculate an estimate for the
¢(7) function at each resolution. The ultimate
value for ¢(7y) is determined as the mean of all
available estimates.

Rainfall time series from 17 gauging stations
near Tokyo area (see Fig. 2) were selected for the
analysis. Hourly rainfall was accumulated to ob-
tain daily series. It was found that the scaling
regime extends from 1hr scale to only 48h scale,
which makes only the 24h and 48h estimates of
c(7) available. Table 1 shows the multifractal pa-
rameters estimated for those rainfall series, using
24h and 48h estimates of ¢(y). Reader is referred
to pathirana, et.al.” for details on the scaling
regime and for the verification of the multifractal
model at this stage.

. Step 0
2 4
0
4 Step 1 \y %
Ratx) Ratx)

] I
[}
/AN ZaN
» Rax)  Rarx) Ratx) ,—Rna;—
0
2000 After a large Number of Steps
me |

0 i J

Fig. 1 A Multiplicative Cascade Process generates a
multifractal field. Rn(z) is a function of a
random variable based on a specific probabil-
ity distribution that affects the distribution of
values in the final multifractal field.

4. MULTIFRACTAL SIMULATION
MODEL

The cascade process shown in Fig. 1 is the basis
of a number of fractals and multifractal distribu-
tion models: Novikov and Stewart?, Yaglom!®,
Mandelbrot!?), Frisch et al.1? Benzi et al.l3)
Meneveau and Sreenivasaan'¥ to name a few.
In case of universal multifractals the function of
a random variable Rn(z) must take the form:
R,(z) = Ezp(Az + B), where z is a Lévy-stable
random variable. A and B are constants. A Lévy-
stable random variable takes the form

P(X >z)~|z|™@ 0<2z)
P(X >a) ~exp(—[al¥)  (x<0) (4)
(¢ <2)and 1/a+1/a' =1

Gupta and Waymire'®, Schertzer and

Lovejoym),Brax and Peshanski17), among others,
have produced cascade models based on Lévy-
stable distribution.

While it is difficult to provide a close-form so-
lution for the distribution (with the exception of
o = 2 case where the distribution is log-normal),
Levy-stable random variables can be generated
numerically. See Wilson et al.!8) and Grigoriu!?)
for a numerical algorithm to generate Lévy-stable
random variables.

The multifractal simulation model used in the
present study is sometimes known as discrete cas-
cade algorithm, which is based on the model de-
scribed in section 25 of Monin and Yaglom?® and
generalized to include Leévy-stable distribution.
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Fig. 2 Location of the rain gauges used for the analysis

Table 1 Properties of the selected rainfall series

Elevation Average Rainfall Record Length Ci H «a

(m) (mm/yr) (yrs)
Ebina 18 1702 22 0.35 -0.06 1.34
Enoshima 60 1551 17 0.32 -0.04 1.35
Funabashi 24 1295 20 0.32 -0.05 1.37
Hachioji 121 1570 8 0.40 -0.07 1.09
Hakone 850 3421 22 0.31 -0.06 1.47
Haneda 3 1374 22 0.33 -0.05 1.37
Hiratsuka 20 1574 22 0.35 -0.06 1.45
Hiyoshi 57 1510 22 0.31 -0.05 1.63
Kisarasu 5 1453 22 0.35 -0.05 1.21
Miura 42 1567 17 0.35 -0.06 1.42
Odawara 28 1968 22 0.39 -0.05 1.09
Sagamihara 149 1677 22 0.38 -0.06 1.29
Sagamiko 188 1552 22 0.42 -0.08 1.23
Setagaya 41 1526 22 0.35 -0.06 1.33
Shinkiba 6 1311 22 0.34 -0.05 1.31
Tokyo 7 1450 22 0.36 -0.05 1.19
Yokohama 39 1625 22 0.26 -0.04 1.92
Average 0.345 -0.056 1.357
St.dev. 0.038 0.009 0.198

The procedure to generate a multifractal field
with given multifractal parameters (C; and «)
is as follows: Subdivide a original field of uni-
form density of unity in to two and multiply each
with exponents of an independent Lévy (stable)
random variable. This procedure is reapplied to
each part of the resulting distribution, dividing
each section of the field in to two equal segments
at each step. After a large number of such steps,
a field with multifractal properties 7 and « can
be obtained. For the specific problem discussed
in this manuscript, the largest scale of interest
(M) was selected as 1024 hours, and thus, 10 cas-
cade steps (resulting in 1024 hour series) should
be performed. A large number of such distribu-
tions give the multifractal field on which the syn-
thetic rainfall series can be based.

(1) From Multifractal Field to Synthetic
Rainfall Series

The discrete cascade algorithm described here
does not conserve the mass-balance during cas-
cading process. Thus, the magnitude of the fi-
nal multifractal field should be adjusted to repre-
sent the magnitudes involved in the rainfall series,
which is achieved by Ryen (i) = pRr,,, M (1)/t(rr)s
where M is the generated multifractal field, Rops
is the observed daily rainfall field and Rgey, is the
resulting synthetic rainfall series. Further, the
resulting multifractal series do not have zero val-
ues, which make it necessary to impose a lower
cut-off value to impose the zero values. It is ob-
vious that these two adjustments are dependant
of each other, and thus should be performed in-
teractively. However, in this study it was found
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out that, simply cutting off the values below 1mm
(which is the least measurement of the observed
rainfall), after adjusting for the mean does give a
reasonable distribution of zero values.

5. RESULTS

The resulting synthetic rainfall series were sub-
jected to extensive verification to test the agree-
ment with the observed hourly data. Three lev-
els of verification were performed, namely, 1) the
distribution of intensities as a set 2) the order-
ing properties, by autocorrelation of rainfall time
series and 3) properties significant to rainfall se-
ries: distribution of rainfall events in duration
and magnitude and distribution of zero values.
Fig. 3 shows some scattergrams of rainfall in-
tensities of the hourly synthetic series generated
based on daily data and original hourly observa-
tions. While the agreement was satisfactory in all
of the series analysed, it was found out that the
method slightly over estimates the rare-intensities
of the synthetic data. At least one past study
(Ngugen and Pandey®) has reported that using
of codimension function to describe rainfall inten-
sities, can underestimate the rare events. We find
that this discrepancy can largely be attributed
to the statistical fitting method used to estimate
the c(v) function. Even though it is possible to
eliminate such problems by fine-tuning the fitting
model, we do not promote such a measure, since,
the purpose of this study is to assess the possi-
bility of deriving hourly data when such data is
not available and hence no comparison of above
nature is possible. However, most of these estima-
tion errors are confined within 10% error margin.
The autocorrelation structure agrees almost
perfectly up to about 10 hours of time lag(Fig. 4).
Since, the typical response studies that demand
hourly data (e.g. flood response of small urban
catchments), have peak-delays of a few hours, this
result is very significant. At the long time lag
values there definitely is a some small amount
of autocorrelation left with the synthetic series,
which is not present with the original data. This
can be explained in very broad terms: The en-
tire process of modeling rainfall and a multifractal
process involves a major simplifying assumption
that the rainfall behaves in a certain orderly fash-
ion (i.e. according to a scaling model) The behav-
ior of the natural phenomenon (observed hourly
rainfall) may have some ‘disorder’ (which causes
the autocorrelation to become almost zero after
about 20 hours) that can not be captured fully by
the multifractal model. The ‘left-over’ autocorre-
lation may be attributed to the modeling error

caused by a ‘forced-orderliness’, thus imposed by
the model.

The ‘rainfall events’ were identified in the ob-
served and generated rainfall series. In this pro-
cess we assumed that the occurrence of a dry pe-
riod of more than 6hrs separates one rainfall event
from the next. The properties of these events are
important characteristics of a rainfall series in the
viewpoint of short time-scale problems like flood
response studies. The duration and the volume of
these rainfall event sets were compared for each
rain gauge station (Fig. 5 and Fig. 6). The event
volume shows similar behavior from very short
events of frequent occurrence to extremely rare
(and long) events. However, for rain event large
enough to have more than five years of return
period, seems to be overestimated by the multi-
fractal model.

In order to compare the distribution of rainy
(and dry) period distribution (i.e. The distribu-
tion of zero/non-zero values at each scale) fracttal
dimension of rainfall series was calculated. In or-
der to compute the fractal dimension the number
of time-steps, N(l) (general term is ‘boxes’ - for
the case of time-series this becomes time-steps)
of a given size needed to cover all the non-zero
values in the distribution is calculated, for vari-
ous values of time-steps lengths (I). Fig. 7) shows
the distribution of the number of non-zero time-
steps(N (1)) against the time-steps size(l). The
slope of the straight-line regression of this distri-
bution is defined as the Fractal Dimension of the
distribution. The number of ‘wet’ time-steps is
slightly over estimated by the rainfall model at
hourly scale (i.e. lesser zero values). However,
in many cases the distribution becomes less over-
estimated (or underestimated in some cases) at
coarser time steps. This is due to the fact that
almost always the value of fractal dimension is
lesser in the generated series than that of the ob-
served series.

6. CONCLUSIONS

We propose a complete method to derive syn-
thetic hourly rainfall series from values observed
at daily scale. The comparison of numerous prop-
erties of those synthetic rainfall series for 17 rain
gauge stations is Tokyo area, shows concrete ev-
idence that this method can be practically used
for the intended purpose, at least for the rainfall
series similar to those used in this study.

Even though the synthetic rainfall series corre-
sponds to their daily counterparts only in a sto-
chastic way (the daily total rainfall is not pre-
served in a corresponding 24h segment of the syn-
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Fig. 3 The comparison of the intensity distribution between observed hourly data and synthetic hourly data.
The total set of non-zero values were divided into 400 quintiles in order to make a statistically mean-

ingful comparison. Generated rainfall intensity is almost always slightly over-estimated towards high
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Fig. 4 Autocorrelations of the synthetic series compared with those of original hourly data. As the lag is in-
creased a residual amount is left on the observed series while the original 1hour data shows a continually

decaying autocorrelation function.
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Fig. 5 Comparison of the distribution of rainfall events. Event duration shows a well-behaved variation well
into the extreme end. (Minimum dry period separating two event was taken as 6h).

thetic series), the verification show that these re-
sults are significantly useful in the real-word hy-
drological problems like soil erosion studies, ur-
ban storm drainage problems and response of
small watersheds.
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