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An application of wavelet analysis is done with the total monthly rainfall data of Matsuyama city, in
order to analyze the rainfall variability observed in such an area. Besides the rainfall variability analysis,
the main frequency components in the time series are studied by the global wavelet spectrum, revealing
that the monthly rainfall in Matsuyama city is composed mainly by an annual frequency. Thus, the
modulation in the 8—16-month band is examined by an average of all scales between 8§ and 16 months,
giving a measure of the average monthly variance versus time, where the periods with low or high

variance could be identified.
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1. INTRODUCTION

The wavelet transform is a recent advance in
signal processing that has attracted much attention
since its theoretical development in 1984 by
Grossman and Morlet". Its use has increased rapidly
as an alternative to the Fourier Transform (FT) in
preserving local, non-periodic, multiscaled phenom-
ena. It has advantage over classical spectral analysis,
because it allows analyzing different scales of
temporal variability and it does not need a stationary
series. Thus, it is appropriate to analyze unregular
distributed events and time series that contain
nonstationary power at many different frequencies.
Then, it is becoming a common tool for analyzing
localized variations of power within a time series.

Several applied fields are making use of wavelets
such as astronomy, acoustics, data compression,
nuclear engineering, sub-band coding, signal and
image processing, neurophysiology, music,
magnetic resonance imaging, speech discrimination,
optics, fractals, radar, human vision, pure
mathematics, and geophysics such as tropical
convection, the EI Nifio-Southern Oscillation,
atmospheric cold fronts, temperature variability, the

dispersion of ocean waves, wave growth and
breaking, structures in turbulent flows, and stream
flow characterization >

The following sections describe the wavelet
transform, the rainfall data of Matsuyama city, and
then the application of wavelet to such data using
the program developed by Torrence and Compo.”

2. WAVELET TRANSFORM

Mathematical transformations are applied to
signals to obtain further information from that signal
that is not readily available in the raw signal. There
are several transformations that can be applied,
among which the Fourier transforms are probably
by far the most popular. In order to maintain time
and frequency localization in a signal analysis, one
possibility would be to do a Windowed Fourier
Transform (WFT), using a certain window size and
sliding it along in time, computing the Fast Fourier
Transform (FFT) at each time using only the data
within the window. This would solve the frequency
localization problem, but would still be dependent
on the window size used. The main problem with
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Fig. 1 Morlet wavelet base with frequency ®o = 6.0, in which
the real part is in solid line and imaginary part is in
dashed line.

the WFT is the inconsistent treatment of different
frequencies: at low frequencies there are so few
oscillations within the window that the frequency
localization is lost, while at high frequencies there
are so many oscillations that the time localization is
lost. Finally, the WFT relies on the assumption that
the signal can be decomposed into sinusoidal
components.

Thus, to measure the stationarity of a time series is
necessary to calculate the running variance using a
fixed-width window. Despite the disadvantage of
using a fixed-width window, the analysis could be
repeated with a variety of window widths. By
smoothly varying the window width, a picture of the
changes in variance versus both time and window
width could be built. The obvious problem with this
technique is the simple “boxcar” shape of the
window function, which introduces edge effects
such as ringing. Using such a black-box-car, there
will be no information on what is going on within
the box, but only recover the average energy.

Wavelet analysis attempts to solve these problems
by decomposing or transforming a one-dimensional
time series into a diffuse two-dimensional time-
frequency image simultaneously. Then, it is possible
to get information on both the amplitude of any
“periodic” signals within the series, and how this
amplitude varies with time.

An example of a wave “packet”, of finite duration
and with a specific frequency, is shown in Fig. 1.
Such a shape could be used as a window function
for the analysis of variance. This “wavelet” has the
advantage of incorporating a wave of a certain
period, as well as being finite in extent. In fact, the
wavelet shown in Fig. 1 (called the Morlet wavelet)
is nothing more than a Sine wave multiplied by a
Gaussian envelope.

Assuming that the total width of this wavelet is
about 10 years, it is possible to find the correlation
between this curve and the first 10 years of the time
series later shown in Fig. 3a. This single number
gives a measure of the projection of this wave

packet on the data during the 1890-1900 period, i.e.
how much [amplitude] does the 10-year period
resemble a Sine wave of this width [frequency]. By
sliding this wavelet along the time series, a new
time series of the projection amplitude versus time
can be constructed.

Finally, the “scale” of the wavelet can be varied
by changing its width. This is the real advantage of
wavelet analysis over a moving Fourier spectrum.
For a window of a certain width, the sliding FFT is
fitting different numbers of waves; i.e., there can be
many high-frequency waves within a window, while
the same window can only contain a few (or less
than one) low-frequency waves. The wavelet
analysis always uses a wavelet of the exact same
shape, only the size scales up or down with the size
of the window.

In addition to the amplitude of any periodic
signals, it is worth to get information on the phase.
In practice, the Morlet wavelet shown in Fig. 1 is
defined as the product of a complex exponential
wave and a Gaussian envelope:

lPo(Tl)= n—1/4eimone—n2/2 (1)
where Wy(n) is the wavelet value at nondimensional
time 1, and ®, is the nondimensional frequency,
equal to 6 in this study in order to satisfy an
admissibility condition; i.e., the function must have
zero mean and be localized in both time and
frequency space to be “admissible” as a wavelet.
This is the basic wavelet function, but it will be now
needed some way to change the overall size as well
as slide the entire wavelet along in time. Thus, the
“scaled wavelets” are defined as:
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where s is the “dilation” parameter used to change
the scale, and » is the translation parameter used to
slide in time. The factor of s is a normalization to
keep the total energy of the scaled wavelet constant.
We are given a time series X, with values of x,, at
time index n. Each value is separated in time by a
constant time interval &¢. The wavelet transform
W.(s) is just the inner product (or convolution) of
the wavelet function with the original time series:

W, (s)=§xﬂf {(—”“—S”B’} 3)
n'=0

where the asterisk (*) denotes complex conjugate.
The above integral can be evaluated for various
values of the scale s (usually taken to be multiples
of the lowest possible frequency), as well as all
values of n between the start and end dates. A two-
dimensional picture of the variability can then be
constructed by plotting the wavelet amplitude and

—212—



phase. Then, a time series can be decomposed into
time-frequency phase space using a typical (mother)
wavelet. The actual computation of the wavelet
transform can be done by the following algorithm®:
(a) choose a mother wavelet; (b) find the FT of the
mother wavelet; (c) find the FT of the time series;
(d) choose a minimum scale s, and all other scales;
(e) for each scale, do:

¢ Using Eq. (4), or whatever is appropriate for the
mother wavelet in use, compute the daughter
wavelet at that scale:

27CS 1/2 R
\P(scok)=(§) ¥, (s, ) (4)

where the ~ indicates the FT.

e Normalize the daughter wavelet by dividing by
the square-root of the total wavelet variance (the
total of ¥ should then be one, thus preserving
the variance of the time series);

e Multiply by the FT of your time series;

e Using Eq. (5), inverse transform back to real
space;

N-bo _
w,(s)= £, ¥ *(s0, )™ (5)
k=0

where ®; is the angular frequency, equal to
2nk/N6¢ for k<N/2 or equal to —2mk/Nor for
k>N/2. 1t is possible to compute the wavelet
transform in the time domain using Eq. (3).
However, it is much simpler to use the fact that
the wavelet transform is the convolution
between the two functions x and ‘P, and to carry
out the wavelet transform in Fourier space using
the FFT; and (f) make a contour plot.

3. RAINFALL DATA

Matsuyama city lies in the middle of Ehime
Prefecture, Japan, at 33° 50° N latitude and 132° 46’
E longitude. Its area is 289.3 km’ stretching 30.2 km
from east to west, and 28.7 km from north to south.
It is about 650 km from Tokyo and about 420 km
from Osaka. To the east of Matsuyama lies Mt.
Ishizuchi (1,982 m), the highest mountain in
western Japan. Matsuyama faces the calm Seto
Inland Sea, and the Shigenobu and the Ishite rivers
flow east to west through the city.

Matsuyama is blessed with natural surroundings,
has very few natural disaster, and little snow in
winter. Its population has increased to 452,000,
which is more than 13 times as large as when the
city was founded in 1889. This area is part of the
Seto Inland Sea climate region, which is mild with
little rainfall throughout the four seasons and the
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Fig. 2 Mean precipitation and temperature in Matsuyama city.

annual mean temperature is 15.3 °C, with an annual
mean rainfall equal to 1,333 mm, based on the
record of the last 110 years. The rainy season is
from middle of June to middle of July and the
typhoons mainly occur between August and
October. The monthly mean precipitation and
temperature are given in Fig. 2 and the total
monthly rainfall series since 1890 to May 2000 is
shown in Fig. 3a. These weather data have been
recorded by Matsuyama Weather Station.

4. DATA ANALYSIS

Wavelet analysis was chosen, besides the other
reasons and advantages described here, because
applications such as standard Fourier Transform
analysis to a time series should be only attempted
when the time series fulfils two important charac-
teristics, namely: (1) stationarity; i.e., that no
changes in the mean, variance, etc, occur throughout
the time series; and (2) that the time series can be
described as the summation of different periodic
components (described by simple harmonic func-
tions) for the whole period. However, most time
series from meteorology and hydrology do not fulfil
both requirements. In fact, earth sciences time series
are usually nonstationary and present trends of the
mean value, changes in the variability for certain
periods. Furthermore, many hydrological time
series, such as precipitation, present unregular dis-
tributed events with nonstationary power over many
different frequencies. Thus, their intrinsic temporal
structure is not well represented by the superposi-
tion of a few frequency components as derived in a
usual Fourier analysis.

(1) Wavelet power spectrum

Since the present data are monthly distributed, the
parameters for the wavelet analysis are set as 8¢ = 1
month and s, = 2 months because s = 28¢, §j = 0.25
to do 4 sub-octaves per octave, and j; = 7/8j in order
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a. Monthly Rainfall of Matsuyama City
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Fig. 3 (a) Total monthly rainfall series of Matsuyama city. (b) The wavelet power spectrum. The contour levels are chosen so that
75%, 50%, 25%, and 5% of the wavelet power is above each level, respectively. Cross-hatched region is the cone of influence,
where zero padding has reduced the variance. Black contour is the 5% significance level, using a red-noise (o = 0.2787)
background spectrum. (c) The global wavelet power spectrum (black line). The dashed line is the 5% significance level for the
global wavelet spectrum. (d) Scale-average wavelet power over the 8—16-month band for the total monthly rainfall in
Matsuyama. The dashed line is the 95% confidence level assuming red noise o = 0.2787.

to do 7 powers-of-two with 3/ sub-octaves each.
Figure 3b shows the power (absolute value
squared) of the wavelet transform for the monthly
rainfall in Matsuyama city presented in Fig. 3a,
which is a record of the last 110 years. As stated
before, the (absolute value)® gives information on
the relative power at a certain scale and a certain
time. This figure shows the actual oscillations of the
individual wavelets, rather than just their magnitude.
Observing Fig. 3b, it is clear that there is more

concentration of power between the 8-16-month
band, which shows that this time series has a strong
annual signal. Classical statistical analysis applied
by previous authors for this area has mentioned the
existence of important low frequency peaks. Here,
we show that such results are misleading as no
significant peaks were attained for low frequency
periods (e.g., 32 and 128 months). However,
wavelet power spectrum for precipitation episodes
with characteristic scale of 2—4-month presents an
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a. Matsuyama Monthly Rainfall Wavelet Power Spectrum
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Fig. 4 (a) The Matsuyama monthly rainfall wavelet power spectrum. The contour levels are chosen so that 75%, 50%, 25%, and 5%
of the wavelet power is above each level, respectively. Cross-hatched region is the cone of influence, where zero padding has
reduced the variance. Black contour is the 5% significance level, using a white-noise background spectrum. (b) The global
wavelet power spectrum (black line). The dashed line is the 5% significance level for the global wavelet spectrum, using

white-noise background spectrum.

important peak, almost significant at the 5% level.
The variance of power in 8—16-month band (also
confirmed later by Fig. 3d) also shows the dry and
wet vyears; i.e., when the power decreases
substantially in this band, it means a dry year and
when the power is maximum means a wet year. For
example, a dry period can be identified during late
XIX century, until the beginning of 1900’s followed
by a wet period until the beginning of 1910°s. An
extreme reduction in power can be found between
the years 1935 and 1945 in the year 1939, which
corresponds to a dry year. Another wet period that
contains certain reductions can be identified since
1979 whose fast reductions of the power are also
due to the presence of very singular dry years, e.g.,
years 1978 and 1994,

The cross-hatched region in this figure is the cone
of influence, where zero padding has reduced the
variance. Because we are dealing with finite-length
time series, errors will occur at the beginning and
end of the wavelet power spectrum. One solution is
to pad the end of the time series with zeroes before
applying the wavelet transform and then remove
them afterward. Here the time series is padded with
sufficient zeroes to bring the total length N up to the
next-higher power of two, thus limiting the edge
effects and speeding up the Fourier Transform.
Padding with zeroes introduces discontinuities at the
endpoints and decreases the amplitude near the
edges as going to larger scales, since more zeroes
enter the analysis. The cone of influence is the
region of the wavelet spectrum in which edge
effects become important and is defined as the e-

folding time for the autocorrelation of wavelet
power at each scale. The peaks within these regions
have presumably been reduced in magnitude due to
the zero padding. Thus, it is unclear whether the
decrease in any band power in this cross-hatched
region is a true decrease in variance or an artifact of
the padding. For much narrower mother wavelets
such as Mexican hat wavelet their cone of influence
would be much smaller and thus is less affected by
edge effects. Note also that for cyclic series, there is
no need to pad with zeroes, and there is no cone of
influence.

The black contour in the same figure is the 5%
significance level, using a red-noise background
spectrum. Many geophysical time series can be
modeled as either white-noise (Fig. 4) or red-noise
(Fig. 3). A simple model for red-noise is the
univariate lag-1 autoregressive process. The lag-1 is
the correlation between the time series and itself, but
shifted (or lagged) by one time unit. In this present
case, this would be a shift of one month. The lag-1
measures the persistence of an anomaly from one
month to the next. The true lag-1 o can be computed
by an approximation using a = (o+a,'?)/2, where
o is the lag-1 autocorrelation and o, is the lag-2
autocorrelation, which is the same as lag-1 but just
shifted by two points instead of one. Since the
present time series shows an o = 0.1983 and o, =
0.1289, the true lag-1 a is assumed to be 0.2787.
Results equivalent to those presented in Figs 3b and
3c are shown in Fig. 4 but with the 5% significance
level using a white-noise background spectrum.
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Note that since the present time series has a small
value of red-noise autocorrelation, the black
contours in Fig. 4a are similar to the contours in
Fig. 3b.

The null hypothesis is defined for the wavelet
power spectrum as assuming that the time series has
a mean power spectrum; if a peak in the wavelet
power spectrum is significantly above this
background spectrum, then it can be assumed to be a
true feature with a certain percent confidence. For
definitions, “significant at the 5% level” is
equivalent to “the 95% confidence level,” and
implies a test against a certain background level,
while the “95% confidence interval” refers to the
range of confidence about a given value. The 95%
confidence implies that 5% of the wavelet power
should be above this level.

(2) Global wavelet power spectrum

The annual frequency (periodicity at 12 months)
of this time series is confirmed by an integration of
power over time (Figs 3¢ and 4b), which shows
only one significant peak above the 95% confidence
level for the global wavelet spectrum, assuming o =
0.2787 (Fig. 3¢) or assuming white-noise (Fig. 4b),
represented by the dashed lines. However, Fig. 3c
also presents an almost significant peak (at the 5%
level) centered in the 2—4-month band. In fact, most
extreme monthly  precipitation values for
Matsuyama city (values above 300 mm in Fig. 3a)
correspond to pulses of highly significant power
within the 2—4-month band (Fig. 3b). This global
wavelet spectrum provides an unbiased and
consistent estimation of the true power spectrum of
the time series, and thus it is a simple and robust
way to characterize the time series variability.
Global wavelet spectra should be used to describe
rainfall variability in non-stationary hyetographs.
For regions that do not display long-term changes in
hyetograph structures, global wavelet spectra are
useful for summarizing a region’s temporal
variability and comparing it with rainfall in other
regions. The global wavelet spectral shape is
controlled primarily by the distribution of feature
scales, and appears diagnostic of the hydroclimatic
regime despite a large range in watershed sizes
because a clear qualitative difference could be found
in the global wavelet spectra of hyetographs from
different climatic regions.

(3) Scale-average time series

The scale-average wavelet power (Fig. 3d) is a
time series of the average variance in a certain band,
in this case 8-16-month band, used to examine
modulation of one time series by another, or
modulation of one frequency by another within the

same time series. This figure is made by the average
of Fig. 3b over all scales between 8 and 16 months,
which gives a measure of the average year variance
versus time. The variance plot shows distinct
periods when monthly rainfall variance was low,
e.g., from 1890 to 1900 and from 1910 to 1920, and
an important peak of power spectrum can be
identified for 1993, clearly indicating wetter than
normal period.

5. CONCLUSION

In order to study the variability of the monthly
rainfall time series in Matsuyama city, wavelet
analysis is applied. The wavelet power spectrum
shows a big power concentration between the 8—16-
month band, revealing an annual periodicity of such
events, which is confirmed by the peak of the
integration of transform magnitude vectors over
time that show again a strong annual signal. The
periods with low variance in such a band can be
identified by the average of the all scales between 8
and 16 months, which gives a measure of the
average monthly variance versus time. Further study
could be done with wavelet analysis of rainfall in
Matsuyama area together with stream flow analysis
in order to benefit erosion models from a
quantitative breakdown of the temporal components
of stream flow, particularly for Ishite river
watershed, in which sediment supply is limited.
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