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This paper deals with the flood routing in river networks where the solution can not be obtained from
hydroiogic routing methods. An improvement for dynamic unsteady one-dimensional (1-D) flow simulation
based on Preissmann implicit finite difference scheme with simultaneous solution is developed. The river
networks are described by a set of basic river reaches between two nodes. A procedure for automatically
creating the order for controlling double-sweep is established. It then is applied for flood routing in the river
network of a part of the Red river basin, Vietnam. From the results, the improvement is expected as an
effective treatment for dynamic flood routing in river networks of dendritic type.
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1. INTRODUCTION

Flood routing is variously defined in hydrology
literature. It usually represents a procedure by which
to determine the outflow hydrograph at a downstream
point of a river (or reservoir), given the inflow
hydrograph at an upstream point thereof”. Flood
routing techniques may be classified in two major
categories: hydrologic routing and hydraulic routing.
The first is simpler than the later. Hydraulic routing is
more complex and accurate than hydrologic routing
and is based on the solution of continuity equation
and momentum equation for unsteady flow in open-
channels”. The well-known St. Venant equations
mathematically describing a gradually varied
unsteady flow in open-channels are usually used.

For the subject of flood routing, the finite
difference method has been often used. The common
numerical methods for implicit finite difference
equations are double-sweep method and Newton’s
iteration method®>**® In the case of a river network,
it needs some modifications as attempts to avoid
solving complicated and extremely large coefficient
matrices resulting from the full-system approach”.
Many researchers have introduced the various
techniques for flood routing in the networks as
treating flow from a tributary like lateral flow®,
overlapping segment technique”, combining the 1-D
and 2-D schemes resulting an inundation model'?.

Utilizing graph theory, a network can be described
by nodes and links and then the system of equations

can be solved by an iterative procedure'™? but it is
difficult to estimate the time of calculation and the
necessary modifications when modeling and
simulating a large network'”. Graph theory is also
used for unsteady flow modeling in river networks
with Galerkin method'®.

Researches of Choi et al.” and Ping et al.' have
used the Preissmann scheme with simultaneous
solution based on double-sweep method. The
research of Choi et al. (and then improved by Nguyen
et al.'®) has limitation on the number of upstream
converging or downstream diverging channel
segments at each junction”; or personal difficulties
from the so-called “general node numbering scheme”
and network with junction of more than four
branches'®. The research of Ping et al. seems to be an
alteration of internal boundary processing, not of
simultaneous solution™.

In this paper, an improvement of simultaneous
solution based on the double-sweep method is
introduced and applied for flood routing in river
networks. From this improvement, the simuitaneous
solution can be applied for any branched network
regardless of its complexity.

2. GOVERNING EQUATIONS

Gradually varied unsteady flows in open-channel
are described by the St. Venant?>'!" equations

for one-dimensional free-surface flow. The equations



are the continuity equation or the mass conservation
equation, i.e.,
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and the momentum equation, i.e.,
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where ¢ is time, x is distance along the longitudinal
axis of watercourse, 4 is cross-sectional area, y is
water surface elevation, oo is momentum correction
coefficient, b, is storage width, g is the gravitational
acceleration and S is friction slope. The Sy value can
be evaluated using Manning's formula:
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in which » is the Manning coefficient of frictional
resistance, R is hydraulic radius, K is the
conveyance factor.

For a river network, continuity of discharge and
compatibility of energy levels must be satisfied at a
junction'?:
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where m is the total number of links, which emanate
from the junction, QO is the discharge of the £-th link.

Hydraulic structures along or adjacent to the
watercourse such as dams, weirs, bridges or
waterfalls are considered as internal boundaries.
Two equations equivalent to the St. Venant
equations are required. They are”'¥:
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where i denotes time line and j denotes space line in
the discrete solution domain. j and j+1 denote two
computational points located immediately upstream
and downstream of the structure so that the change
of storage at the structure can be ignored.

Equation (7) is usually an empirical relation for
computing discharge values through the structures.

3. SIMULTANEOUS SOLUTION

(1) Discretization and double-sweep method

Equations (1) and (2) can be solved numerically
by approximating them with a set of finite
difference algebraic equations. In this paper, the
widely-used Preissmann implicit finite difference
scheme® ' is applied.

The equations expressed in finite difference for a
Ax river reach from cross section j to cross section

Jj+1 can be written as follows> 1%

Alij+1+B1AQj+1+C1Ayy +DxAQj +G1 = () (8)
A8+ BrAQy 1 +Cady; +DrAQ,+Gr =0 (9)

where Ay and AQ are increments of water surface
elevation and discharge during the time step 4. 4,
B,,..., G, can be computed from the known values of
Q and y at the previous time step.

A convergent discretized form of the basic
relationships, together with appropriate boundary
conditions, furnishes a system of non-linear algebraic
equations in terms of unknown flow variables at the
next time. The double-sweep method®-9- 3119161179
is usually used because of its advantages.

By introducing the linearized approximation®->-':

(10)

AQ=Edy; + F;
which is inserted into the difference equations (8)
and (9), yielding:
ij = .LjAy]‘+1 +MAQJ'+1+M (1 1)

As its name, the double-sweep method includes
two “sweeps” along a river reach. The first sweep is
forward sweep or elimination sweep and the second
sweep is backward sweep or substitution sweep. In
other words, there are two steps in calculation
process. In the first step, the coefficients E, F, L, M,
N are calculated for all cross sections (computational
points) of the reach and then the unknown values of
Q and y are obtained by back substitution in the
second step. The double-sweep method is now
widely accepted as the most efficient way to solve

system of nonlinear as well as linear equations'”.

(2) Determining the order for double-sweep

The double-sweep method can be applied for
dendritic or branched river networks™'**'**'%j.e. the
network without loop) with some modifications. For
branched networks, the main problem is determining
the order for elimination in forward sweep. That is,
the network will be rearranged so that the double-
sweep method can be applied as in the case of a
single reach. In this paper, a procedure used to solve
this problem automatically is developed.

The river network is modeled by a basic element
of river reach or branch (i.e., link in graph theory).
Each reach has two nodes at two ends. The reach’s
index and node’s index are independently numbered
as integer numbers. There is no strict criterion for



numbering river reaches and nodes, except the
number of a reach (or a node) must not be coincided
with others. A node is a position of junction
(confluence) or external boundary. As double-sweep
method is applied only to subcritical flows, it is not
necessary to make distinction between upstream and
downstream boundary in the elimination process.
Thus, the “positive” flow direction in a reach from
one node to the other is supposed firstly. When the
computation completed, if the value of discharge is
negative, it means that the real flow direction in the
reach is opposite with the supposed one. By this way,
the river network can be described by a set of river
reaches and then the respective nodes.
Mathematically, it can be described by two vectors or
two lists. The first list is the list of river reach’s
indexes (ListR) and the second one is the list of
node’s indexes (ListN). The second depends upon the
first and has a relationship with the first: if the ListR
has » elements, the ListN will have 2n elements.

The two lists are set up simply. At first, the ListR
is initiated with free order. From the ListR and
respective supposed flow direction in each reach, the
ListN is constructed. The procedure to look for the
order of elimination now will work with these two
lists. Its substance is the alternative progress of
searching unique nodes in the ListN and removing the
respective reach from ListR until ListN is empty. It is
explained by the flowchart in Fig. 1. The orders of
reaches that are eliminated successively, as well as
the direction of elimination in each reach are both
formed by this procedure. They are ListROrder and
ListNOrder, respectively. Considering an example of
river network as shown in Fig. 2 and using the
procedure, following lists are yielded:

ListR (at beginning): {/, 2, 3, 4, 5,6, 7, 8, 9, 10, 1],
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26,27}

ListN (at beginning): {1, 3; 2, 3; 3, 8; 4, 8; 5, 7; 6,
7; 7, 8; 8, 13; 9, 11; 10, 11; 11, 13; 12, 115 17, 12;
18, 12; 15, 14; 16, 14; 14, 13; 20, 21; 13, 21; 19,
21; 22, 21; 23, 22; 24, 22; 25, 21; 26, 28; 27, 28; 28,
21}

and, after the procedure has done:

ListROrder: {1, 2, 4, 5, 6, 9, 10, 13, 14, 15, 16, 18,

20,22,23,24,25,26,3,7,8 12,17, 21,27, 19, 11}

ListNOrder: {1, 3,2,3,4,8,5,7,6,7,9, 11, 10, 11,
17, 12, 18, 12, 15, 14, 16, 14, 20, 21, 19, 21, 23, 22,
24,22, 25, 21, 26, 28, 27, 28, 3,8, 7, 8, 8, 13, 12, 11,
14, 13,22, 21, 28, 21, 21, 13,11, 13}

For easy explanation, italic numbers are used for
reaches and bold numbers are used for nodes in the
lists. In addition, the commas and the semi-colons
are alternatively used in the ListN (at beginning)
with the purpose of easily recognizing the relationship

Initiate two lists: ListROrder, ListNOrder;
ListROrder=Empty, ListNOrder=Empty.

y
Take ListR and ListN into consideration

v

Search in ListN for the unique nodes. With each

unique node:

e put it into ListNOrder and then remove it
from ListN

e find the correspond reach and put it into
ListROrder and then remove it from ListR.

e find the other node of the reach and put it
into ListNOrder and then remove it from
ListN.

@ Les Is ListR empty? No

Fig. 1 Flow-chart of the procedure determining the
order of elimination
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Fig. 2 An example of river network described by
river reaches and nodes

between reaches and respective nodes, regardless the
validation as regular form used in mathematics.

(3) Modifying the lists

Depend on the two lists (ListR and ListN) supplied
as input information; the procedure always generates
two respective lists automatically (ListROrder and
ListNOrder). A problem can occur when the last
appeared element in ListNOrder (last node) is not a
boundary node. In this case, the solution at this last
node (e.g. node 13 in preceding example) must be



resolved theoretically by solving the equations (4)
and (5) written for this node. This should lead a
complexity in computation, so in this paper the two
lists (ListROrder and ListNOrder) need to be
modified and rearranged. Because of branched
network, there is unique path between two nodes.
The paths from the last node in ListNOrder to each of
boundary nodes can be found out by using the
standard “shortest-path algorithm™®, Then, the
shortest path of these paths will be used to rearrange
the order of ListROrder. The way to rearrange is that
all river reaches in this shortest path will be moved to
the end of the ListROrder and the ListNOrder will be
respectively rearranged, but the direction is reversed
to the supposed one. At last, the new ListROrder and
new ListNOrder are received. Combining these two
lists by mixing the elements with the form as node —
river reach — node — node — river reach — ...—>
node, the final order for computation is found out,
named FinalList. Now, the elimination sweep is
controlled by FinalList. For simplification, a
downstream boundary condition is predefined and is
supplied as an input data in this paper and the only
one path has to look for is the path from last node in
ListNOrder to this predefined node. For example, if
the predefined node is 25 (Fig. 2) so the path is
13519-52152152425; and the rearranged
ListROrder and ListNOrder are:

ListROrder: {1, 2, 4, 5, 6, 9, 10, 13, 14, 15, 16, 18,
20,22,23, 25 26, 3,7, 8 12,17, 21, 27, 11,19, 24}
ListNOrder: {1, 3,2,3,4,8,5,7,6,7,9,11, 10, 11,
17,12, 18, 12, 15, 14, 16, 1 , 20,21, 19, 21, 23, 22,
24, 22,26, 28,27,28,3,8,7,8,8,13, 12,11, 14, 13,
22,21,28,21,11,13,13,21, 21, 25}

and the FinalList is:

FinalList: {1, 1,3,2,2,3,4,4,8,5,5,7,6,6,7,9,
9,11, 10, 10, 11,17, 13, 12, 18, 14, 12, 15, 15, 14,
16, 16, 14, 20, 18, 21, 19, 20, 21, 23, 22, 22, 24, 23,
22, 26, 25, 28,27, 26,28,3,3,8,7,7,8,8, 8, 13,
12,12,11,14,17,13,22,21,21,28,27,21, 11, 11,
13,13, 719,21, 21, 24,25}

From the FinalList, the elimination sweep can be
read as follows: start to calculate the coefficients at
node 1, and then, calculate the coefficients for all
computational points along reach / to node 3. After
that, move to node 2 and calculate the coefficients at
node 2, and calculate the coefficients for reach 2 to
node 3, and so on. When elimination process is
completed, the substitution process is done with
revered order in FinalList. At last, the unknowns
can be found out for all computation points of the
network. The standard double-sweep for a single
river reach requires two boundary conditions at two
ends of the reach. In river networks, there are two
kinds of reaches: reaches with one boundary

condition at one end, and reaches without any
boundary condition at both two ends. Therefore, all
reaches need to be processed so that the coefficients
E, F can be computed at the first cross section in
elimination sweep and L, M, N at the last cross
section in substitution sweep. This problem can be
solved by using nodes close to these cross sections.
That is the reason why the FinalList is constructed
as above form. Using the procedure to create the
order for double-sweep method, the internal nodes
have been treated so that there are one or more
incident reaches coming to a node but only one
reach emanating from the node in forward sweep.
Thus, the main rule for computation at an internal
node is that all incident reaches of this node have
been swept to find out the values of coefficients £
and F at the last cross section of these incident
reaches. From these values, the coefficient E and F
can be computed for the reach emanating from the
node and they are the values of first cross section
in next reach which will be eliminated.

The preceding treatment for a river network is
essentially considering it as a river reach, but a
special river reach with special cross sections. These
special cross sections have additional computations
of nodes. In other words, when the last order has been
set up, all the reaches in the networks have been
rearranged to make the only one new reach. Physical
connections at a junction are transferred to treatment
of nodes and their close cross sections in simulation.
Therefore, from this main idea, it can be said that all
of the effectiveness of double-sweep method for a
single river reach can be inherited in the case of river
networks. With the improvement, the double-sweep
method can be applied for any branched networks
regardless the maximum order of a branch as well as
the number of branches at a node. When a river
network is changed, it is not necessary to do any
modification of basic formations or source codes. All
simple works have to do are re-describing the
network by branches and respective nodes and supply
them to a model as input information.

4. APPLICATION AND RESULTS

The model is applied for a part of the Red river
basin, a significant basin in Vietnam. The map of this
part is shown in Fig. 3. The investigated river
network is described by reaches and nodes as shown
in Fig. 4. The total length of the river reaches using in
computation is about 900 km with 262 cross sections.
The distance between a cross section to adjoining one
varies from 400-500 m to 3-4 km, even to 6 km. The
typical shape of cross sections in the network is the
form of compound section (Fig. 5). The network is
virtually dyked with extensive floodplains about 200-
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Fig. 4 Schematic of investigated river network

300 m; especially 2-3 km at some places. The
floodplain is cultivated area. The cover conditions of
floodplain vary strongly in space and time. The flow
regime in the region is affected by both river flow
and tide from the sea and the bottom slope of
riverbed is mild (about 0.5-0.01%). For these cross
sectional properties, the conveyance factor (K) can be
evaluated partly, including left floodplain, main
channel and right floodplain. The total cross-sectional
conveyance factor is calculated as follows®:
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Fig. 5. Typical cross section in the investigated network
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Fig. 6 Results from the model applied for a part
of the Red river network.
K=K+K.+K (12)

in which the subscripts /, ¢ and r designate left
floodplain, main channel and right floodplain.

After FinalList for the network is created, the
double-sweep is used incorporate with boundary
conditions. The solution for discharge and water level
can be found out from equations (10) and (11) for all
computational points in the network. The flood from
9 to 31, August 1996 is taken into calibration process.



Table 1 The values of Manning’s n for some types of
floodplain cover condition

Type of floodplain The initial The selected
cover condition values of n values of n
Villages or 0.080 0.070— 0.160

residential areas

Bamboo hedges 0.050 0.045 - 0.100
Grass or cultivated | ¢ 45 0.020 - 0.050
area with cereals

Fluvial bogs with 0.030 0.025 - 0.050
sedges or jutes

Main channel 0.020 0.015 - 0.035

This flood was a large flood in the Red river basin.
Upstream boundary conditions used in calibration are
given as observed discharge hydrographs at Hoa Binh,
Phu Tho, Vu Quang, Hung Thi and Ba Tha. The
downstream boundary conditions are given as
observed water level hydrographs at Nhu Tan, Phu
Le, Ba Lat, Dinh Cu, Tien Tien and Pha Lai (Fig. 4).
The investigated and measured topographical data
from 1992-1999 are used in simulation.

As the dynamic unsteady flow model is often
sensitive to the value of the Manning coefficient of
frictional resistance (n), the calibration process is
adjusting value of » to produce the minimum
differences between observed and simulated
hydrographs of discharge and water level. The values
of n are selected via trial-and-error calibration
methodology. Initial values and adjustments of » are
based on field investigations and other guidelines'®*".
The initial and selected values of » for typical types of
floodplain cover condition as well as for main channel
part in the network are shown in Table 1.

Results of calibration are shown in Fig. 6. The
error in discharge is 4-15%. The maximum error in
peak water level is 42 cm and the maximum error in
time of the peak is 10 hours. From these results, it
can be said that the model with the improvement of
automatically determining the order for double-
sweep can more conveniently use in flood routing in
branched river network.

5. CONCLUSIONS

An improvement of simultaneous solution for
dynamic flood routing in branched network by
Preissmann implicit finite difference scheme is
introduced in this paper. With the consideration that a
river reach is the basic element for river network
modeling, a procedure of determining the order for
double-sweep algorithm is developed. By this
procedure, the model can be applied to complex
branched networks regardless the number of reaches
at a node. This permits to “complicate” river network
without any modification of the model, excepting
input data. The model developed from the

improvement is constructed and applied for routing a
flood in a part of the Red river basin. The calculated
values have good agreements with observed ones.
However, it is necessary to apply the model to
other river networks in order to estimate its
applicability more thoroughly. The improvement
presented here is un-applicable for a completed
looped network and this is still a disadvantage of the
simultaneous solution based on double-sweep method.
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