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In order to provide a robust tool to be used in runoff-erosion modeling, the present paper introduces
new evolution steps in the SCE-UA genetic algorithm, which is based in the simplex theory. The new
evolution steps were conceived in order to improve the efficiency of such an algorithm. Thus, they will
theoretically expand the simplex in a direction of more favorable conditions, or contract it if a move is
taken in a direction of less favorable conditions. Hence, these new evolution steps enable the simplex
both to accelerate along a successful track of improvement and to home in on the optimum conditions.
Therefore, it will usually reach the optimum region quicker than the previous version and pinpoint the
optimum levels more closely. The new proposed algorithm is tested with special mathematical functions,
as well as in the optimization of the erosion parameters presented in a physically-based runoff-erosion
model. On the basis of these simulation results, the mean erosion parameter values are given, which agree
with previous values reported to the same area. Thus, the new algorithm can be considered as a promising
tool to optimize physically-based models as well as other kinds of models.
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1. INTRODUCTION

New robust techniques for parameter calibration
of physically-based erosion models have always
been investigated due to the difficulties involved in
such calibration. The evolutionary algorithms have
proven to be robust in optimization process, because
the natural evolution is a population based optimi-
zation process. Thus, simulating this process by
computer results in optimization techniques that can
often outperform classical methods of optimization
when applied to difficult real-world problems.

Santos et al." tested a genetic algorithm named the
shuffled complex evolution (SCE-UA) developed
by Duan et al.”, which showed promising perform-
ance to optimize parameters of conceptual rainfall-
runoff models. Their results showed that the SCE-
UA could be used in physically-based erosion
model optimization, but to assure that the method
could pinpoint the optimum point faster and more
closely, some improvement should be introduced;
hence, making the method a more robust tool. The
SCE-UA method applies a simplex downhill search
scheme® for the evolution of each complex; thus, in

order to improve its efficiency in terms of how to
reach the global minimum, new evolution steps are
introduced into the search scheme.

The next sections will describe the simplex down-
hill search scheme present in the SCE-UA method,
but including the new evolution steps, and then test
if this modified method is capable of finding the
global minimum of test mathematical functions. Fi-
nally, the modified method is applied to optimize
the main erosion parameters of a fundamental sheet
erosion model developed specially for small water-
shed. The selected area is a 0.48 ha experimental
micro-basin located in northeastern Brazil.

2. MODIFING THE SCE-UA METHOD

The SCE-UA method can be considered a robust
tool for typical optimization problems because it
embodies the following desirable properties: (1)
global convergence in the presence of multiple re-
gions of attraction; (2) ability to avoid being trapped
by small pits and bumps on the objective function
surface; (3) robustness in the presence of differing
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parameter sensitivities and parameter interdepend-
ence; (4) non-reliance on the availability of an ex-
plicit expression for the objective function or the
derivatives; and (5) capacity of handling high-pa-
rameter dimensionality. These properties charac-
terize the problems encountered in model calibra-
tion, inclusive of physically-based erosion model
calibration.

The SCE-UA method is based on a synthesis of
four concepts: (1) combination of deterministic and
probabilistic approaches; (2) systematic evolution of
a “complex” of points spanning the parameter space,
in the direction of global improvement; (3) com-
petitive evolution; (4) complex shuffling. The steps
of the SCE-UA method are (a) generate randomly a
sample of s points xy, ... , X, in the feasible space Q
c R”, compute the function value f; at each point x,,
rank the points according to the order of increasing
criterion, and partition of the sample into p com-
plexes A4', ... , A”, each containing m points where
the first point in the first complex represents the
point with the smallest function value, the second
smallest value is in the second complex and so on;
(b) evolve each complex (community) independ-
ently according to the competitive complex evolu-
tion (CCE) algorithm; (c) shuffle the complexes; (d)
check if any of the pre-specified convergence crite-
ria are satisfied, if so stop, otherwise, check the re-
duction in the number of complexes and continue to
evolve.

The CCE algorithm, based on the Nelder and
Mead” simplex downhill search scheme, used by
the original SCE-UA presents only three evolution
steps: reflection, contraction and mutation. The sim-
plex methods are based on an initial design of n + 1
trials, where # is the number of variables. Thus, the
simplex is a geometric figure in an n-dimensional
space; i.e., a simplex defined by three different trial
conditions for two control variables has a shape of a
triangle. In the same way, the shapes of the simplex
in a one and three variable search space are a line
and a tetrahedron, respectively. A geometric inter-
pretation is difficult with more variables, but the
basic mathematical approach can handle the search
for optimum conditions. In order to improve the
evolution process and to make the algorithm reach
the optimum region quicker and pinpoint the opti-
mum levels more closely, new evolution steps were
introduced in this present paper. These modifica-
tions are introduced into the CCE algorithm, then
the new algorithm should be called modified com-
petitive complex evolution (MCCE) algorithm,
whereas modified SCE-UA or MSCE-UA would be
the best denomination for the SCE-UA that uses the
MCCE. The MCCE is then presented below:

1. To initialize the process, select ¢, @, and f,

where 2<g<m,a>1and f2>1.
2. Assign weights as follows. Assign a trapezoidal
probability distribution to 4, i.e.,

_2(m+1-1)
pi= m(m+1) ’

The point x,* has the highest probability py =
2/(m + 1). The point x, has the lowest
probability p,, = 2/m(m + 1).

3. Select parents by randomly choosing ¢ distinct
points uy, ... , u, from 4" according to the prob-
ability distribution specified above. The ¢ points
define a “subcomplex”, which functions like a
pair of parents, except that it may comprise
more than two members. Store them in array B
={u, v,j=1, ..., q}, where v, is the function
value associated with point #,. Store in L the lo-
cations of 4* which are used to construct B.

4. Generate offspring according to the following
procedure: (a) Sort B and L so that the g points
are arranged in order of increasing function
value and compute the centroid G using the ex-
pression:

=1 m )

G- % >
=——>u

g-155" @
(b) Compute the new point » = 2G — u, (reflec-
tion step). (c) If  is within the feasible space Q,
compute the function value /. and go to step d,
otherwise go to step g. (d) If /. < f;, compute e =
3G — 2u, (expansion step); otherwise go to step
g. (e) If e is within the feasible space Q, com-
pute the function value f, and go to step f. (f) If
Je <f. replace u, by e and go to step 1; otherwise
replace u, by r and go to step 1; (g) Compute ¢’
= (3G — u,)/2 (positive contraction step). (h) If
fe+ is within the feasible space (), compute the
function value f;. otherwise go to step j. (i) If f..
< f, replace u, by ¢ and go to step I; otherwise
go to step j. (j) Compute ¢ = (G + u,)/2 (nega-
tive contraction step), and compute f,.. (k) If f.
< f; replace u, by ¢ otherwise compute the
smallest hypercube H < R’ that contains A4,
randomly generate a point z within H, compute
J: set ¥ = z and set f, = f, (mutation step). (1) Re-
peat steps a-k « times, where « > 1 is the num-
ber of consecutive offspring generated by the
same subcomplex.

5. Replace parents by offspring as follows: Re-
place B into A“ using the original locations
stored in L. Sort 4* in order of increasing func-
tion value.

6. Iterate by repeating steps 2-5 £ times, where f 2
1 is the number of evolution steps taken by each
complex before complexes are shuffled; i.e.,
how far each complex should evolve.

— 706 —



Fig. 1 Example of the evolution steps that can be taken by each
complex in a two-variable control space (v, and y,).

If the dimension of the subcomplex is set to n + 1,
the subcomplex will become a simplex and the local
improvement direction could be reasonably esti-
mated by the described evolution steps. Figure 1
summarizes the evolution steps including the new
ones (expansion e and negative contraction ¢’) to
evolve the worst point w through the centroid G in a
subcomplex defined by three different trial
conditions (black dots) for two control variables (y;
and y,). Differently from the previous version, the
mutation step takes place if all evolution steps fail to
improve the criterion value, randomly selecting a
point in the feasible parameter space to replace the
worst point w of the subcomplex. This mutated
point is selected according to a normal distribution
with the best point of the subcomplex as mean value
and using also the standard deviation of the
population.

3. PHYSICALLY-BASED MODEL

A distributed physically-based runoff-erosion
model called WESP" is used to test the MSCE-UA.
This model has been used for simulations in the se-
lected area, and thus the new optimized parameters
could be compared with previous studies. The
model uses the Green-Ampt equation to model the
infiltration:

f@:&@+£%j 3)

where f (¢) is the infiltration rate (m/s), K is the ef-
fective soil hydraulic conductivity (m/s), N, is the
soil moisture-tension parameter (m), F(¢) is the cu-
mulative depth of infiltrated water (m) and ¢ is the
time variable (s).

(1) Plane flow
The plane flow is considered one dimensional.
Meaning’s turbulent flow equation is given by:

1 2/3 ¢1/2
u=—=R;"S/

P

Q)

where Ry(x,?) is the hydraulic radius (m), u is the
local mean flow velocity (m/s), S; is the friction
slope and 7, is the Manning friction factor of flow
resistance for the planes. Thus, the local velocity
equation for planes can be obtained making Ry = 4
and using the kinematic approximation that the fric-
tion slope is equal to the plane slope (S, = S)):

u=ah"" %)
where 4 is the depth of flow (m), & is a parameter
related to surface roughness, equal to (l/n,,)So”Z, and
m'=5/3 is a geometry parameter.

Sediment transport is considered as the erosion
rate in the plane reduced by the deposition rate
within the reach. The erosion occurs due to raindrop
impact as well as surface shear. The sediment flux
@ (kg/m*/s) to the flow is written as:

D=e, +e, —d (6)

where e, is the rate of sediment by rainfall impact, e
is the rate of sediment by shear stress, and d is the
rate of sediment deposition. The rate e, (kg/m?/s) is
obtained from the relationship:

e, =K,Ir, (7
in which K; is the soil detachability parameter
(kg-s/m*), I is the rainfall intensity (m/s), and r, is
the effective rainfall (m/s), which is equal to 7 — f.
The rate ez (kg/m%/s) is expressed by the relation-
ship:

e, = KRTI.S (8)

where Ky is a soil detachability factor for shear
stress (kg-m/N'’s), and 7 is the effective shear
stress (N/m”), which is given by:

T=yR,S 7 &)
where yis the specific weight of water (N/m*), and d
(kg/m?/s) is expressed as:

d=g&Vc (10)
where £ is a coefficient that depends on the soil and
fluid properties (set to 0.5 in this study), ¢(x,¢) is the
sediment concentration in transport (kg/m’) for the
planes, and ¥ is the particle fall velocity (m/s) given
by:

V,=F (11)
and,
2 2
F o= 2 36v 36v (12)

J— + —
’ 3
I4 /4
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where  is the specific weight of sediment (N/m?), v
is the kinematic viscosity of water (m%/s), d; is the
mean diameter of the sediment (m), and g is the ac-
celeration of gravity (m/s%).

(2) Channel] flow

The concentrated flow in the channels is also de-
scribed by continuity and momentum equations. The
momentum equation can be reduced to the discharge
equation with the kinematic approximation:

0=adr,"” (13)
where 4 is the area of flow (m”). The net sediment
flux @, (kg/m/s) for the channel is expressed by:

D, =g, +e —d, (14)
where ¢ is the lateral sediment inflow into the
channel (kg/m/s), e, is the erosion rate of the bed
material (kg/m/s) obtained from the relation:

e, —alr-1.)" (15)
in which a is the sediment erodibility parameter, and
7, is the critical shear stress for sediment entrain-
ment (N/m®), which is given by the relationship:

7, =80, -y, (16)
where & is a coefficient (0.047 in the present study),
% is the specific weight of sediment (N/m®) and d, is
the mean diameter of sediments (m).

The deposition term d, (kg/m/s) in equation (14)
is expressed by:

d.=¢T,V.C (7)
in which &, is the deposition parameter for channels,
considered as unity in the present case, Iy is the
flow top width (m), and C(x,?) is the sediment con-
centration in transport for the channels (kg/m”).

4. FIELD EXPERIMENT

SUDENE (Superintendency of Northeast Devel-
opment, Brazil), ORSTOM (French Office of Sci-
entific Research and Technology for Overseas De-
velopment) and UFPB (Federal University of
Paraiba, Brazil) operated an experimental basin
called Sumé Experimental Watershed, which was
located in northeastern Brazil in a typical semiarid
area. Several micro-plots operated by simulated
rainfall, four micro-basins, nine experimental plots,
one sub-basin, and several micro-plots subjected to
natural rainfall composed the facilities of such ex-
perimental basin. In order to evaluate the runoff and
sediment yield, the surface conditions, as well as the
slope, for each either micro-basin or experimental
plot were maintained differently. Four standard rain
gauges and two recording rain gauges were installed
close to the micro-basins and plots so that rainfall
data could be provided. At the outlet of the basins, a

rectangular collector for the measurement of sedi-
ment discharge was settled, terminating with a 90°
triangular weir for the measurement of flow dis-
charges. The collector could hold all the surface
runoff and sediment discharges from most of the
low to medium rainfall events, thereby providing a
means for accurate runoff and sediment measure-
ment”.

One of the four micro-basins of this experimental
basin was selected to be used in this work because it
was maintained always bare and thus the influence
of human intervention, as well as the desertification
process, could be also examined. Its mean slope,
area and perimeter are 7.1%, 0.48 ha, and 302 m,
respectively.

Based on the work of Santos et al.D, 45 events
were selected between 1987 and 1991, because it
was the period in which the surface of the micro-
basin was actually maintained bare.

5. TESTING THE MODIFIED SCE-UA
WITH MATHEMATICAL FUNCTIONS

This section describes a number of test functions
used in assessing the performance of the Modified
SCE-UA Algorithm. These functions are drawn
from the literature on genetic algorithms, evolution-
ary strategies and global optimization.

(1) Setting of the genetic parameters

The genetic algorithm contains many probabilistic
and deterministic components that are controlled by
some algorithmic parameters. For the method to per-
form optimally, these parameters must be chosen
carefully. The first one is m, the number of points in
a complex (m > 2), which should be neither too
small, to avoid the search to proceed as an ordinary
simplex procedure, nor too large, to avoid an exces-
sive use of computer processing time while no cer-
tainty in effectiveness is taken. Then the default
value, m = 2n +1, was selected. For the number of
points in a subcomplex g (2 < g < m), the value of n
+ 1 was selected because it would make the sub-
complex a simplex; this defines a first-order ap-
proximation (hyperplane) to the objective function
surface and will give a reasonable estimate of the
local improvement direction. The number of con-
secutive offspring generated by each subcomplex «
(= 1), was set to one to avoid the search becoming
more strongly biased in favor of the local search of
the parameter space. The number of evolution steps
taken by each complex (> 0) was set to 2n + 1 to
avoid a situation in which complexes would be shuf-
fled frequently if set to a small value or to avoid it
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shrinking into a small cluster if a large value is used.
The number of complexes p was set to 2 based on
the nature of the problem, and the minimum number
of complexes required in the population pp, (1 <
Pmin < p) Was set to p because it gave the best overall
performance in terms of effectiveness and effi-
ciency.

Since there are two control variables, » is equal to
2 and the number of points in a complex m is equal
to 5 because m = 2n +1. The number of points in a
subcomplex ¢ is equal to n + 1, thus ¢ = 3. The
number of consecutive offspring generated by each
subcomplex « is set to 1. The number of evolution
steps taken by each complex £ is equal to 5 because
B =2n + 1. The number of complexes p is set to 2
thus the population becomes equal to 10, and finally
the minimum number of complexes required in the
population py,, is set to p.

(2) Mathematical functions

Three test functions were selected to perform the
tests: The Rosenbrock, Goldstein-Price® and Six-
Hump Camel-Back functions”’.

Rosenbrock’s valley is a classic optimization
problem, also known as the Banana function. The
global optimum is inside a long, narrow, parabolic
shaped flat valley. To find the valley is trivial, how-
ever convergence to the global optimum is difficult
and hence this problem has been repeatedly used in
assessing the performance of optimization algo-

rithms.

fRosen :100( 2—y12)+(1—y1)2 (18)
in which the control variables are as —2.048 < y; <

2.048 and -2.048 < y, < 2.048. The global minimum
is located at (31, y2) = (1, 1) where the function value

iS]{Rosen(yl; y2) =0.
The Goldstein-Price function £, is also a global

optimization test function used to test global optimi-

zation techniques, which is defined as:
Jooa1¥,) =Term, x Term,

where:

(19)

Term, =1+(yl +y, +1)2 x Term,

Term, = (19-14y, +3y2-14y, + 6y, y, +3y?)

Term, = 30+(2y,-3y2 )2 x Term,

Term, = (18-32y, +12? +48,-36y,, +27y2)
in which the control variables are as —2 < y; < 2 and
-2 <y, < 2. The global minimum is located at (yy,
¥2) = (0,-1) where the function value is food(y1, ¥2) =
3.

The 2-Dimensional Six-hump camel back function

was another global optimization test function.
Within the bounded region are six local minima;

Table 1 Recommended values for the genetic parameters.

Genetic

Parameters q a B p Pmin
General  2m+1  n+l 1 2n+1 2 p
n=2 5 3 1 5 2 2
n=3 7 4 1 7 2 2

two of them are global minima.
2, Y2
S (J’wyz): (4—2-1)/1 TV \J)ﬁ +Term; (20)
where:

Term, = y,y, + (—4+4y§ )yi
in which the control variables are as —3 < y; < 3 and
-2 £y, £ 2. The global minimum is located at (y,,
y2) = (-0.0898, 0.7126) or (y1, y») = (0.0898,
-0.7126) where the function value is fsn(y1, y2) =
-1.0316.

In spite of the difficulty involved in finding these
function global minima, the Modified SCE-UA
showed a promising performance in terms of
efficiency and effectiveness, because it located the
global optimum for each function or pinpoint it
more closely within few evolutions; e.g., the final
criterion value for the froen Was equal to 0.213 x 10
after 24 evolutions whereas with the previous
version, the correspondent value was 0.131 x 107
with 23 evolutions.

6. APPLICATION WITH FIELD DATA

(1) Selection of the genetic parameters

The genetic algorithm parameters used for this
application were set with the same values as used in
the application of the method with the mathematical
functions as described in section (5.1). That is, n
was equal to 3 because there were three control
variables. The number of points in a complex m be-
came 7 because m = 2n +1. The value of ¢, which is
the number of points in a subcomplex, was set to n +
1, then g = 4. The number of consecutive offspring
generated by each subcomplex a was set to 1. The
number of evolution steps taken by each complex g
was equal to 7 because = 2n + 1, and the number
of complexes p was set to 2 thus the population be-
came equal to 14. Finally the minimum number of
complexes required in the population py,;, was set to
2, which is equal to the number of complexes p.

(2) Optimization of the physically-based model
Firstly, a scheme of planes and channels was se-
lected to represent the studied area. The schemati-
zation of the micro-basin in 10 elements has been
reported® to be the best scheme to represent the
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Fig. 2 Observed and simulated sediment yield.

area, thus this schematization was selected in this
study. There were four parameters in the WESP
model to be determined by optimization. The first
was the soil moisture-tension parameter N, in equa-
tion (3), which could be calibrated simply by ad-
Jjusting the computed runoff depth with the observed
value. The remaining three parameters were related
to the erosion process, so the optimization had to be
done according to the adjustment of computed and
observed sediment yield data. Since there were three
erosion parameters (a, Kz and X)) to be calibrated,
the Modified SCE-UA method was then used.

The initial values of these parameters were set as

a =0.0144 kg-m’, Kz = 2.174 kgm/N'5.s and K; =

5.0 x 10® kg-s/m*, and the objective function J to be

minimized was:

E -E
E

o

J= Q1)

where E, is the observed sediment yield (kg) and E.
is the calculated one (kg). The optimization for the
45 events agreed 100% with each event, in which
some cases the efficiency improved more than two
times. The mean values of the erosion parameters
are computed as a = 0.008 kg-mz, Kp = 2.524
kg-m/N's, and K, = 5.632 x 10® kg-s/m* and they
were used then to run new simulations. Figure 2
shows the simulation results for the sediment yield
with some acceptable degree of agreement, except
for a few events, which can be attributed to some
errors in the observed data as well as to the fact that
mean parameter values were used for such runs.

7. CONCLUSION

In order to develop a robust tool to be used in
optimization of physically-based erosion models,
new evolution steps were introduced to the SCE-UA
genetic algorithm, which evolves the point commu-
nities according to the - simplex search scheme.
These new evolution steps were intended to expand
the simplex, theoretically, in a direction of more
favorable conditions, or contract it if a move is

taken in a direction of less favorable conditions.
Hence, these steps enable the simplex both to accel-
erate along a successful track of improvement and to
home in on the optimum conditions. Therefore, it
will usually reach the optimum region quicker and
pinpoint the optimum levels more closely. The tests
using special mathematical functions showed that
the new algorithm could find their global optimum
point, thus proving that it could be used in the opti-
mization of physically-based models. Hence, final
tests were performed in the optimization of the main
erosion parameters of the WESP model, which is a
distributed physically-based runoff-erosion model,
and the results showed that the Modified SCE-UA
can be considered as a promising tool for further
optimizations.
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