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A large-eddy simulation tool is adopted to simulate the three-dimensional flow around the submerged
spur-dikes. A numerical method is put forward to compute the three-dimensional flow with free surface
and complex boundaries. The numerical method is established on the base of finite-volume/finite-
difference method with staggered grid. A method of the equivalent Cartesian grid in a fluid cell, whose
volume is the same with that of the irregular fluid cell, is used to deal with the irregular cells and the eddy
viscosity coefficient at the boundary cells in the flow field with complex boundaries. The water surface
and the velocity distribution around submerged spur-dikes of simulation are compared with those of
experiment. It is shown that the results of simulation are in agreement with those of experiment and it is
possible to apply the numerical model to simulate the complex flow with complex boundaries.
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1. INTRODUCTION

In the past, 3-dimensional Reynolds-averaged
Navier-Stokes (RANS) equations were made use of
to compute the flow field with free surface around
spur-dikes" ? ¥. A certain difference exists between
computation and experiment. The comparison
between the water surface of simulation and that of
experiment was not made”. For problems with
medium to large deformations the numerical
methods produce results that are reasonable from a
physical viewpoint while their accuracy is difficult
to assertain®. For the reason that the flow around a
spur-dike is 3-dimensional because of the irregular
boundary conditions and strong reverse flows, the
shortcomings of RANS equations may explain the
difference between computation and experiment.

To solve the difficulty facing to RANS, the large-
eddy simulation (LES) is an alternative approach.
LES is superior to RANS method when the flow is
really complex and especially when large-scale
structures dominate the turbulent transport and
unsteady process is involved”. Here, we made an
attempt to simulate the unsteady 3-dimensional flow

with free surface around submerged spur-dike with
different angles. Computational results were
analyzed and compared with experimental ones. It
shows that LES is suitable to be applied to simulate
the unsteady flow around spur-dikes.

2. LES EQUATIONS

The LES equations filtered through Navier-stokes
equations are written as ),
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where #, is velocity, g, is acceleration of gravity,
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P is pressure, x; is axis of Cartesian coordinate,
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Smagorinsky (1963) proposed an eddy-viscosity
model”, which is widely used at present.
Smagorisky's eddy viscosity is written as,

v, = (CsA|S], @)
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where Cg is a coefficient, [Slzw/ZSlmS,m ,
A=3/AxAyAz , Ax, Ay, Az are cell sizes in x,
y, z directions of Cartesian coordinate. For

channel flows, usually C; =0.1.
The free surface condition is:
oh . sOh ,Oh
— =W -y ——v -,
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where his water depth from water surface to bed

3)

5

plane, u°, v°, w® are water surface velocities in
X, y, z directions, respectively.

3. NUMERICAL METHOD

The equivalent Cartesian grid is utilized to
approximate complex geometry and to simulate
incompressible  fluid flows over complex
boundaries. Here we give the equivalent Cartesian
grid in the x, y-directions (see Fig.1). In Fig.1, the
imaginary lines are grid lines, the fine actual lines
are the equivalent Cartesian grid lines and the coarse
actual lines are the boundary of the obstacle. As
shown in Figl, the complex geometry is
approximated as both Cartesian grid lines and
equivalent Cartesian grid line segments. The
conservation of mass and momentum on complex
boundaries is enforced by the second-order
interpolation or extrapolation method (see Chap. 4).

The finite-difference LES equations were
discretized on staggered grid® * '”. The time
integration was computed by using the second-order
Adams-Bashforth method. For space terms, the
second-order centered difference method was used.
For pressure term, Projection method was applied to
compute pressure and velocities by means of
iteration.

4. BOUNDARY CONDITIONS

(1) Water-surface velocities

In the MAC (marker and cell) method, the
velocities of two ;))oints near the water surface are
assumed the same®. Then, it is easy to determine the
water surface velocities. In fact, there is a vertical
distribution for velocity or pressure. If MAC method
is used, it will cause some errors for surface
velocities and surface position calculations. Here,
we use Lagrangian interpolation or extrapolation
method to approximate the vertical distribution of
velocity (see Fig.2). The water surface velocities
and pressure for the position (7, j ) are,
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(a) In x~direction

(b) In y-direction
Fig.1 The equivalent Cartesian grid
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Fig.2 Water surface condition
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where ¢, =Az, [Az, ¢, =Az [Az, P is water

5
surface pressure.
For the cell above the calculation area, we assume

the velocity as (see Fig. 2):

ui+%,j,k+1 = uii%,j ’ (7)
~ W, ¢, >0 ®
Likd it €, <0
Ikt
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Using the method mentioned above, it is not
difficult to obtain vf],+l and v, (omitted).
’ 2

1
z,]+5,k+l

It is proved that the water depth and surface
velocities computed by this method is more in
agreement with experiment than that computed by
the original MAC method'”.

(2) Boundary-cell velocity

The principle to determine the velocities and
pressure adjacent to walls is no-slip condition and
mass conservation law with which the velocities are
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satisfied, respectively. The velocity distribution near
the boundary cell is assumed to vary continuously
(see Fig.3). Then the second-order interpolation or
extrapolation formula to calculate the boundary-cell
velocity is obtained as follows.

u, =(a, |b| +a,b*)sign(b)sign(u,)
u, (2Ax + b)* —u, (Ax + b)*
Ax(Ax + b)(2Ax + b)
s (Ax+b)—u,2Ax +b)
27 Ax(Ax +b)(2Ax + b)

(10)

where, a, =

>

1 b>0
sign(b) =40 ; b=0;.
-1 b<0

(3) Entrance and exit

Velocity distributions of entrance and exit were
given at first before computing. From numerical
results of water surface, there is a transition before
arriving at the real 3-dimensional flow from the
position where velocity is given (see Fig.4). In the

case of simulation (see Chap.5), Ax,=50cm,

Ax, =30cm. If the length of simulation is 300cm,

the ideal length of simulation results of 3-
dimensional flow is about 220cm.

(4) Water depth

The finite-difference approximation of equation (3)
is written using a space-centered, forward-in-time
difference method. For time integration, Adams and
Bashforth method is used to compute the time
integration of water depth.

For water depth near the boundary, we use
Lagrangian extrapolation method to determine water
depth value inside the boundary as (see Fig.5),

hy, =3(h —h,)+h,. an
(5) Eddy viscosity coefficient

Usually, the eddy viscosity coefficient is calculated
by using damping functions, such as Van Driest’s
equation 'V, It requires fine-grid arrangement at the
boundary and expensive calculation. To avoid the
defects of the former method, the eddy viscosity
coefficient in a cell is determined according to the
fluid volume inside it. Here we give the following
formula to compute the eddy viscosity coefficient
with full fluid or partial fluid (see Fig.6):

v = (fCsA)’[S| (12)
where f=V,/V., V, is the cell volume with
partial fluid, V. is the cell volume with full fluid. If
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a cell is full of fluid, the eddy viscosity coefficient
calculated from equation (12) is the same with that
calculated from equation (2).

5. VERIFICATION

The experiment was carried out in an 18.5m long,
0.4m wide and 04m deep flume. The flow
discharge is 0.015m’/s and the water depth of
uniform flow is 0.1m. A submerged spur-dike was
set in the middle of flume. The submerged spur-dike
is 0.1m long in the cross-section, 0.05m high, and
0.015m thick. The experiment was carried out with
two kinds of spur-dike. One is 60-degree spur-dike
(repelling spur-dike) and another is 120-degree
spur-dike (aftracting spur-dike). The observing
reach for experiment is 200cm long and the spur-
dike is set at x=100cm'”?. The simulation of 3-D
flow was carried out with 300x42x 15 grids and
each of grid sizes is 0.01m. The water surface and
the velocity distribution of simulation are compared
with those of experiment.

(1) Water surface

For longitudinal direction or lateral direction, there
is a section where the water surface varies more
greatly than other sections. Here we choose the
longitudinal section ( y =4cm) and the cross-section

(x=110cm) to compare the water surface of
simulation with that of experiment.
a) The longitudinal section

The phenomenon of water surface in the
longitudinal section is that the water surface at first
goes up slowly until x=90cm; then the water
surface goes down fast until x=105cm for the
condition of 60-degree spur-dike or x=110cm for
the condition of 120-degree spur-dike. From the
lowest point the water surface goes up again. The
upstream water surface until spur-dike of simulation
is the same with that of experiment for both the
condition of 60-degree spur-dike and the condition
of 120-degree spur-dike (see Fig.7). From
x=100cm to x=140cm, the water surface of
simulation is a little different from that of
experiment. The maximum difference is 4.0mm for
the condition of 60-degree spur-dike and 3.2mm for
the condition of 120-degree spur-dike. However,
from x=150cm the result of simulation is almost
the same with that of experiment.
b) The cross-section

The phenomenon of the water surface in the cross-
section is that the water surface ( y <15cm) is lower

than the water surface (y>15cm). In the area
(y <15cm), the water surface of simulation is higher

than that of experiment (see Fig.8). The
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Fig.7 Water surface in the longitudinal section
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Fig.8 Water surface in the cross-section

maximum difference is 1.3mm for the condition of
60-degree spur-dike and 2.5mm for the condition of
120-degree spur-dike. From y =15cm to y =40cm,
the water surface of simulation is the same with that
of experiment for both the condition of 60-degree
spur-dike and the condition of 120-degree spur-dike.
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(2) Velocity distribution and large eddies
a) The inclined plane

On the side of spur-dike, the velocity is influenced
directly by spur-dikes. From x=80cm to x =100cm
the velocity decreases due to the blocking of spur-
dike. For the condition of 60-degree spur-dike (see
Fig.9), there is an eddy existing and also the
reattachment length is about 20cm for both
experiment and simulation. For the condition of
120-degree spur-dike (see Fig.10), there is an eddy
downstream the spur-dike for both experiment and
simulation. The reattachment length is about 20cm
for experiment and the retachment length of
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Fig.12 120-degree spur-dike
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simulation is almost similar with that of experiment.
From the reattachment point to the downstream on
the side of spur-dike, the velocity distribution of
simulation is a little different from that of
experiment.
b) The longitudinal section

When the part of main flow crosses the submerged
spur-dike, the flow area increases. Then an eddy
appears in the longitudinal section. For the condition
of 60-degree spur-dike (see Fig.11), the eddy size of
experiment is smaller than that of simulation. For
simulation, the eddy is about 10cm long. From the
reattachment point to the downstream, the water
surface velocity decreases sharply while bed surface
velocity increases greatly for both experiment and
simulation. For the condition of 120-degree spur-
dike (see Fig.12), the eddy size is about 25cm long
for experiment and 30cm long for simulation. The
bed surface velocity decreases and the numerical

— 609 —



result is more serious than the experimental one.

Moreover the surface velocity with the condition
of 60-degree spur-dike decreases drastically to very
small values downstream of spur-dike while that
with the condition of 120-degree spur-dike doesn’t
change remarkably downstream of spur-dike.
¢) Cross-section

For the condition of 60-degree spur-dike, the eddy
size and shape of simulation is almost the same with
that of experiment; the width of eddy is about 15cm
(see Fig.13). For the condition of 120-degree spur-
dike, the flow structure is complex and the flow
direction is chaotic for both experiment and
simulation (sec Fig.14).

6. CONCLUSIONS

It is proved that LES is an effective tool to
simulate the three-dimensional flow around the
submerged spur-dike. The numerical method is
established on the base of finite-volume/finite-
difference method with staggered grid. It is an
improvement on MAC method and can deal with the
problems of free surface and complex boundaries
using the equivalent Cartesian grid method. The
numerical results are in agreement with the
experimental ones on the whole. Therefore, the
equivalent Cartesian grid method can provide an
accurate simulation of incompressible flow over
complex boundaries and it is also not difficult to
apply the method to the 3-dimensional flow with
regular boundaries.
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