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LES simulations have been performed using different finite difference schemes derived by a general
procedure for discretising the convective terms to evaluate their importance in the resuits of the simulation.
Two typical subgrid-scale stress models have also been examined. The flow past a square cylinder is taken
as a benchmark test case of general flow around a bluff body. The code was initially validated at different
low Reynolds number and then calculation results are compared with experimental data. Dynamic
Smagorinsky model is seen to improve the solution marginally. Upwind-biased scheme of appropriately

high order has been found to give satisfactory results.
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1. INTRODUCTION

As fast and large-capacity computers are
becoming affordable nowadays, large computational
loads can be tolerated in many practical calculations
of turbulent flows, particularly if accuracy and
universality are gained. Large-Eddy Simulation
(LES) is one such technique that once thought to be
too expensive for practical calculations has a
potential to be exploited in various engineering and
environmental applications and certainly to many
flows appearing in hydraulics. Though there have
been many attempts of using this potentially useful
technique, there still is a lack of uniformly accepted
methodology. Different methods are proposed, but
they yield different results. The main element of
LES method has been though to be modelling of
subgrid stresses and many models have been
proposed'™, but the outcome of recent workshop
attended by leading developers indicates that the
results depend on many other factors like grid
resolution, numerical schemes and boundary
conditions®. While there are many elements in the
numerical solution of the equations of motion, such
as how the pressure is computed and time advancing
is done, but the most important is the discretisation
of the convective terms due to its non-linearity and
dominancy at high Reynolds number. While
discretising this term, the leading truncation error of
even order has dissipative and that of odd order has
dispersive influence on the solution and higher order
ones lessen these effects. So far there has not been a

conclusive study reported on the influence of
various numerical aspects on LES, since it has
been difficult for an individual to study the effect
of all numerical aspects.

In the present study we examine the
importance of finite difference schemes to be used
in typical LES of flows around bluff body, taking
the flow past a square cylinder as a benchmark test
case. This is a case for which detailed
experimental data are available and is the test case
of the workshop reported by Rodi et al.”. Using a
general procedure, finite difference schemes of
arbitrary orders of accuracies are derived for the
discretisation of the convective terms. The results
are examined for a range of Reynolds number and
different grid resolution with typical subgrid stress
models. Finally, calculation of turbulent flow past
a square cylinder at the Reynolds number of 22,000
is performed and detailed comparisons are made.

2. NUMERICAL METHODS

The basic equations used in LES are three-
dimensional, time dependent, Navier-Stokes
equations, filtered in order to separate the large
scale and the small scale motions. In this study
incompressible flow is considered and the code
solves the filtered governing equations along with
closure subgrid-stress model by finite difference
procedure. As the focus of the present work is a
study on the discretisation and model influence,
governing equations are not described here and
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Fig. 1 Computational domain and boundary condition

they can be found in Nakayama and Noda” and
vairous literature. Numerical procedures employed
to solve the equations are explained in this section.

(1)Calculation domain and computational grid
The flow configuration considered is shown in
Fig.1. It is uniform flow past a square cylinder and
the associated boundary conditions for the
numerical computations are as described. As the
body is geometrically simple, cartesian co-ordinate
system with staggered mesh arrangement, is used.
The grids are uniformly spaced inside the cylinder
and for short region just outside and then unequally
spaced determined by the stretching factor. Based
on these and for the present computational domain,
two sizes of grid are arrived at: i) 101x91x21 and ii)
130x111x21 for all 3-D cases, referred to as G1 and
G2 respectively in this study. x,-coordinate origin is
fixed on the rear side of the cylinder and that of x,-
coordinate coincides with the axis of the cylinder.

It is reported® that very fine grid resolution near

solid wall enabled by 2-dimensional simulation, may
be more important than representing 3-dimensional
motion by a 3-D LES, which limits the grid size.
Hence, 2-D LES is also performed. To adopt the
same code developed for 3-D to 2-D easily, number
of grid points in the spanwise direction is reduced to
the minimum required, computation domain extends
from -6D to 16D in the x;-direction and 15D in the
X, direction. and a grid of 256x161 is chosen for 2-D
case. Table 1. gives relevant information for all the
chosen grid.

(2) A general procedure for the discretisation of
the convective terms

In the governing equations, convective terms are
expressed in gradient form. They are discretised by

Table 1. Computation grid

Grid Size Ax, . points Stretching Ratio
’ inside the Sty STia, STy
szm cylinder
101x91x21 | 0.05D 21x21 1.12, 1.06,1.06
130x111x21 | 0.04D 26x29 1.05
256 x 161 0.02D 51x51 1.03

finite difference schemes by a general procedure in
the program as explained here. If fix) is the
continuous function to be represented by discrete
values f{x;), the finite difference formula for the
mth derivative at x=x, and for any order of
accuracy (N), the problem is reduced to finding the

weights (5, ).

formula for the derivative at x=x, is writen as a
function of f{x)

d"f
dax”

where, m is order of derivative and N is order of
accuracy. For the convective term discretisation,
the order m is set to 1. The weights are calculated
(Fornberg”), by taking the relative position of
neighbouring points (« ,). The order in which the

The general finite difference

:i%j(av), m=0L.. M; n=mm+1,..N
o 0

neighbouring grid points (« ) are described and

number of neighbouring points considered, decide
the particular differencing scheme with required
accuracy. So, by one control input from outside,
the same code switches to the desired
scheme. For the present study, four schemes were

considered viz., a) second order central, b) fourth
order central, c) third order upwind-biased and d)
fifth order upwind-biased and are referred to as
CD2, CD4, UPB3 and UPBS respectively.

(3)Other numerical details

Viscous terms are discretised by second order
accurate centeral differencing. Uniform inflow is
specified at the upstream end and radiation outflow
condition is applied at the downstream end. The
periodic conditions and slip conditions are
assumed for the spanwise and cross-flow
directions, respectively. The nonslip boundary
conditions are applied on the body surface.
HSMAC scheme is used for pressure calculation
step.  As it is required to capture resolved
fluctuations in time, time advancing is performed
by second order accurate explicit, Adams-
Bashforth method for the convective terms, which
is stable for any value of CFL number. For other
terms implicit Euler method is followed. All the
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calculations are performed with the non-dimensional
time increment of 0.001 for 3-D case and with
0.0005 for 2-D case.

(4)Subgrid stress models

The filtering procedure introduces the non-
resolvable subgrid scale stresses which describe the
influence of the small scale structures on the larger
eddies. For modelling these subgrid stresses, two
different models are used namely, (a) well known
Smagorinsky model® and (b) dynamic model
proposed by Geramano et al.”. In order to resolve
viscous sublayer and to apply the nonslip boundary
condition on the wall, the first grid point next to the
wall in the normal direction should be set close to
the wall (interms of non-dimensional wall distance
should be less than 20). This point becomes
physically closer and closer to the wall, as the
Reynolds number increases. But, it is found from
approximate calculation for both the grid used in this
study, that the first point was not in this region. So,
Van-Driest type near-wall damping for eddy
viscosity is not used. Thus, Smagorinsky constants -
C, and C,, are being set to the constant value of 0.13
and 0.094 respectively. For the dynamic procedure,
additional filtering is performed by top-hat filter.
Following a suggestion of Lilly'®, a least-squares

approach is used to determine values of C .

Additionally, negative eddy viscosities are clipped.
Moreover, computations have been performed
without any subgrid-stress model.

3.PERFORMANCE OF THE METHOD

Before calculating the actual test case, it is
necessary to validate all the schemes and the model

incorporated in the code. So, at first calculations
are performed at different low Reynolds number.
All the calculation results shown here are at the non-
dimensional time of (U,/D=20, after the time
marching calculation is started from the uniform-flow
initial conditions.

(1)Validation by laminar flow calculation

For this purpose, Smagorinsky’s constant are
set to zero, which means, the subgrid stresses are
neglected and the flow is laminar at such low Re.
Table 2 gives the list of different cases run and the
keys used to refer to them. Fig. 2(a) shows the
results for Re=50, represented by the plots of
contours of constant spanwise component vorticity.
At this low Reynolds number, the flow is steady
and symmetric with a separation bubble with twin
vorticies. It is seen that all the calculation results
agree with one another and show anti-symmetric
vorticity distribution around the x-axis accurately.

The results represented by streamlines in
Fig.2(b) also indicate the same trend and nearly
symmetric separation bubbles of almost the same
length.  These are traces of constant stream
function and shapes of the streamlines depend very
sensitively on the value of the stream function. At
Re=100, the flow starts to be a little unsteady and
the flow pattern start to depend on time. The
results using different finite difference scheme
shown in Fig.3, indicate that the results of different
method still agree very well. The CD4 scheme
using the coarse grid G1 diverged and the results
shown here are for the fine grid G2. Higher order
schemes show more undulations indicating
sensitivity to stability. These results indicate that
the laminar flow at low Reynolds number is
computed correctly
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(2)Effects of subgrid-stress model

Table 3 shows the calculation cases for flows
with the subgrid-stress model included. The case
of Re=100 is also considered, which is low enough
so that subgrid stresses are not important. Results
of this test case confirm that calculation by the
same code, by setting the Smagorinsky constant to
zero can be consistant with that the flow is laminar.
Fig. 4(a) is the corresponding results for the case of
Re=200. Higher-order schemes on fine grid are
seen to show start of vortex shedding. However, it
is to be noted that CD2 scheme on coarse grid
shows spurious oscillations in vorticity upstream of
the cylinder and (not shown) streamlines show only
small disturbances, which vanishes when used with
fine resolution. CD4 scheme has not worked at all.

4.VALIDATICN BY EXPERIMENTAL
DATA

In this section results are discussed for the
case of turbulent flow at Re=22,000 for which
experimental data are available'"'”. This case has
been studied extensively and considered as the
benchmark problem for LES calculation. For this
case, in addition to the third order, fifth order
upwind-biased scheme is also considered as a
higher order scheme reduces the effect of
numerical viscosity. Also, 2-D LES is also
performed with one grid size and with third order
upwind-biased scheme. Both time and spanwise
averaging have been done for the statistical
quantities.

It is to be mentioned here that second order
central difference scheme has not worked for this
high Reynolds number even with present fine grid
resolution. Fig.5 shows example of instantaneous
flow pattern in terms of streamlines and vorticity.
Fig. 6(a) is a plot of the mean velocity along the
center-line behind the cylinder. Fig.6(b) compares
velocity profile on the cylinder. In fig. 7(a), (b)
and (c), turbulent quantities are plotted from both
calculation and experiment. Fig.8 shows variation
of mean surface pressure computed by present
method and the experimental results of Lee'” and
Otsuki et al.'”. Table 4 gives the comparison of
bulk quantities for this case.

(1)Three dimensional effect

Because more points are provided very close
to the wall, 2-D LES is seen to predict better in the
boundary layer velocity profile on the cylinder
side. The mean centerline velocity, however is
grossly under-predicted. This may be due to the
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delayed vortex shedding as seen from the calculated
Strouhal number. Pressure on the rear side of the
cylinder and sides is overpredicted, reducing the
drag coefficient. The increased resolution near wall
provided by a 2-I3 LES does not seem to improve the
overall predictive ability.

(2) Influence of discretisation

Examination of the effects of different
discretisation schemes is the main subject of the
present study and is done in this subsection.
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It is seen from Fig.6(a) that the results improve
with the order of accuracy, if it is of odd-order and
that the results using finer grid is better.

About the normal stress components both
streamwise and crosswise, from Fig. 7(a) and
Fig.7(b), it can be seen that, UPB5 scheme capture
the peak value very close to that of experiment and
all the scheme predicts the decay of the stress in
the wake well.

UPB3 scheme on the coarser grid calculates
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mean drag coefficient lower. But for three cases, the
values of the Strouhal number (St) fall in a close
range of experimental data. This observed
phenomena matches with comment reported in Rodi
et al.Y, as the accurate prediction of this quantity
need not be an indication of quality simulation.

(3) Influence of the subgrid-stress model

It is seen from the results that without the
subgrid model that the numerical viscosity due to
upwind difference alone is inadequate. On the other
hand, both the conventional and dynamic
Smagorinsky model using higher-order differencing
scheme appear to be very close, indicating that the
refinement in the subgrid stress model is not as
important as the proper difference scheme or grid

density.
Table 4. Comparison of Bulk parameters

Case Cq Lg St

Expt. 2.1 1.38 0.132
Sub-Cases
GIUPB3 1.78 2.41 0.150
GIUPBS 2.02 1.32 0.125
G2UPB3 2.20 1.28 0.135
G2UPB3 1.88 3.00 0.110
(no model)
G2UPB3 2.24 1.22 0.136
(dynamic)
G2UPBS 2.14 1.28 0.135
2-D LES 1.78 1.99 0.18

Cq4 - mean drag coefficient; Lg - Reattachment length

5. CONCLUSIONS

A general code to discretize the non-linear
convective term for arbitrary order of accuracy also
incorporating two typical subgrid-scale stress model
is written and a detailed study of their influence on
LES was made. Other numerical aspects of
computation were kept same for all the cases
considered. Code developed was initially validated
with laminar cases and then for subgrid scale model
at relatively low Reynolds number cases. It is found
from this study that central difference schemes have
stability problems and sensitive to grid resolution.
While upwind-biased schemes work without any
problem, higher order central differencing scheme
fails to work computationally even at moderatively
high Reynolds number. On comparing the
simulation results at Re=22,000 with experiment, it
is noted that on the whole, higher order upwind-
biased scheme on fine grid reproduces the
experimental results reasonably well. This better
performance can be attributed to higher order
accuracy and lesser magnitude of numerical

dissipation. 2-D calculation results clearly
underline the need for 3-D calculation in LES type
of simulation, even though one can resolve the
viscous sublayer by having a very fine grid.
Although dynamic subgrid-stress model with lower
order differencing scheme predicts better, it is
computationally 1.3 times expensive than using
higher order upwind-biased scheme. Hence, it is
suggested that for engineering purposes, fifth order
upwind-biased  scheme  with  conventional
Smagorinsky subgrid-stress model will do the
needful.
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