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Flux-difference splitting scheme of Roe for free-surface flow simulations is combined with the

Preissmann slot to simulate flows in a closed conduit wherein the flow may change from free-surface to

pressurized flow and vice-versa. The model can simulate conduits with uniform cross-sections of arbitrary
shape, with bed slope and bed friction. The model is verified against available experimental data on free-
surface-pressurized flow. Thereafter, the model is tested against some exacting sample problems. It is

demonstrated that the model yields very reasonable results in all the cases considered. A sensitivity

analysis is performed for the size of the slot and useful conclusions are drawn from the study for the

simulation of free-surface-pressurized flows.
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1. INTRODUCTION

Flow in a closed conduit can be free-
surface or pressurized or free-surface in some
reaches while pressurized in others. Flows in a
conduit with transitions from free-surface to
pressurized flow, and vice-versa are called free-
surface-pressurized flows. Such flows may occur in
sewers, tailrace tunnel of a hydropower plant,
tunnels of morning glory spillway, diversion tunnels
etc. Since free-surface and pressurized flows are
governed by different equations, the simulation of
free-surface-pressurized flows become problematic.
However, a comparison of the governing equations
for free-surface and pressurized flows reveals that
the equations are identical if the depth of flow in the
equation for free-surface flows is assumed equal to
piezometric head in the case of pressurized flow".

Following this similarity, Priessmann
developed a technique wherein a very narrow slot is
assumed at the top of the conduit in such a way that
it does not add to the wetted perimeter and its
contribution to the flow area is negligible. This
interesting concept facilitates computation of free-
surface-pressurized flow by the shallow water
equation alone.

Wiggert”

computed free-surface-

pressurized flow by a shock-fitting model and
verified numerical results with his experimental data.
Baines et al.” did some preliminary works on
application of Roe’s upwind TVD scheme to flows
with steep waves in plant channels. They computed
only one case of free-surface-pressurized flow and
termed their outcome as inconclusive. Capart et al.”
used Pavia Flux Predictor scheme to compute flow
in sewer pipes and verified their model with
experimental and field data. The model was found
to accurately compute the considered cases. Garcia-
Navarro et al.” presented an implicit method for
computing flow in channels and pipes. The model
was reported to yield reasonable results for transient
flows, particularly flows with continuous or
discontinuous steady states.

In this paper, flux-difference splitting
scheme of Roe®, well studied and found accurate in
case of free-surface flow simulations™®, is combined
with the Preissmann slot to simulate free-surface-
pressurized flows. The model includes bed slope
and bed friction. The model is successfully verified
against experimental data of Capart et al. and its
applicability is tested with problems of surge
propagation in rectangular conduits. Finally, a
sensitivity analysis is performed for the width of the
slot with respect to the width of the conduit.
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2. GOVERNING EQUATIONS

The governing equations for

dimensional free-surface flows can be written as
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Where U is the vector of unknowns, E is the flux
vectors and S is the vector containing source and
sink terms. The vectors are given by

one-

U=(A uA) (22)
E=(uA wA+gh) (2b)
S=(0 -gA(S,-Sy)) (20)

where A = flow area, u = flow velocity, g =
acceleration due to gravity, S, and S; are bed and
friction slopes, respectively, and F, is hydrostatic
pressure term defined as the first moment of the
flow area about the free surface. The flux vector E is
related to U through it’s Jacobian J as
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where W(n) is the conduit width at distance n from
conduit bottom. The governing equations are known

to be hyperbolic, which means that J has a complete
set of independent and real eigenvectors expressed

as
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where ¢ = celerity. The eigenvalues of J are given
by

A? =utc (6)

Roe® constructed an approximate Jacobian
in place of J, which makes the resulting scheme
conservative. The approximate Jacobian uses
following average values of velocity

_ A}izlum + Ail/zui
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and with the following definition of operators
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average celerity is given as
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3. NUMERICAL SCHEME

Roe’s first-order accurate flux difference
splitting scheme for one-dimensional transient free
surface flows can be written as

U:H = U: -}/[Fitﬂ/z 'Fit-l/z] (10)

where i and t = space and time indices, respectively;
Y = At/Ax; At = time increment and Ax = finite
difference grid size in space. The treatment for the
source term will be discussed later in the paper. All
variables are computed at known time level t, if not
indicated otherwise. F,,, and F,,, are called
numerical fluxes and are expressed as

2
F., =05(E +E,,)- -SZ"%};U:Z |aiktl/2e:(il/2 (1)
k=1

where o = wave strength, defined as

12
Aisip = €U L,

(12)
AU, =U;, -U; (13)

Roe’s scheme is conservative and
consistent with the governing equations. However, it
violates energy inequality condition in case of a
rarefaction wave. The most common remedy for this
problem is to replace the modulus of A in Eq.11 by a
small positive quantity & whenever the modulus of A
is less than d. Value of & can be set by trial but this
paper uses the formula suggested by Harten and
Hyman”

4. SOURCE TERM

This term in the present study includes bed
friction as well as bed slopes. The bed friction is
computed by the Manning’s formula as

_ QQp’
- A2R 3
where n = Manning’s coefficient, Q= discharge and
R = hydraulic mean radius defined as R=A/P, P
being the wetted perimeter. In case of pressure flow,
the following formulas can be used to compute flow
depth/piezometric level, hydrostatic pressure term

S, (14)

— 504 —



and wetted perimeter. Let A; = full cross-section
area of the conduit, P~ wetted perimeter at full flow,
h; = maximum height (diameter, d in case of circular
pipe) of the conduit, and b, = width of the slot.

h=h, + 22 (15)
2
F, = A, 0.5hf+A_Af +(A A (16)
S 2bS
P=P, (17)

The bed slope term contains derivative of bed level
with respect to independent variable x. Following
Roe'?, the bed slope term should be upwinded in the
same way as the flux term E, the details of which
are referred to Jha et al."".

5. NUMERICAL STABILITY

The scheme presented herein must satisfy
the well known CFL condition for stability.
Therefore, the new time step is computed at the end
of each step by the following formula

min(Ax)

At<C, (18)

max(u +c)

where C,=the Courant number

6. NUMERICAL RESULTS

The model is first verified against
available experimental data taken from Capart et
al.¥ The experiments were conducted in a 12.74m
long closed conduit of circular cross-sections
connecting two tanks. The pipe diameter was
0.145m, constant along its length, but had three
different longitudinal slopes in three sections as
given below;

0 <x <348 0.01954 m/m
348 < x £ 9.23 0.01704 m/m
923 < x < 1274 0.01225 m/m

A constant discharge of 0.0042 m’/s was
provided from the upstream end throughout the
experiment. This results in supercritical flow
throughout the pipe. The water level in the
downstream tank was then raised by means of an
outflow control weir, a jump was eventually formed
which traveled upstream in the pipe leaving
pressurized flow behind. Just before the jump could
reach the upstream end of the pipe, the water level
in the downstream tank was drastically reduced
which allowed the flow to return to its initial free-
surface flow. The measured water level downstream
is used as the downstream boundary condition in the
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Fig.1 Surge moving upstream in a closed pipe. Line — Computed, Symbol — Observed.
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Fig.2 Surge receding downstream following lowering of water level in the downstream tank.

Line — Computed, Symbol — Observed.

numerical computations. The water/piezometric
levels were recorded at seven points along the pipe
at x-0.325m, 1.135m, 3.06m, 5.505m, 6.835m and
7.6m. Other details of the experiment may be
referred to Capart et al.¥

The computations are carried out with Ax
= 0.Im and the Courant number equal to 0.6. The
slot width is specified as 10% of the pipe diameter.
Fig.1 shows the computed and recorded water
surface profiles at 25s, 45s, 65s, 85s, 105s, 125s and
145s. During these times, the jump forced by the
raising of water level in the downstream tank
advances upstream. Soon after 65s, flow in the
lower parts of the pipe becomes pressurized while in
the rest of the pipe free-surface flow prevails. It can
be seen from the figure that the model correctly
computes the surge height and the celerity, both in
the free-surface and in the pressurized zone.

The water level in the downstream tank
rises till 162s, the time when the surge is close to the
inlet but yet to cause drowning of the inlet. Then the
downstream water level is lowered suddenly. The
surge begins to recede towards the downstream end
and eventually the initial flow is restored. The water
surface profiles during this depressurization phase
are shown in Fig.2. The profile at 169s returns to
fully free-surface flow and at 200s the initial flow

profile has been fully restored. The computed
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Fig.3 Plot of Piezometric levels at locations along the pipe.

profile again compares very well with the observed
data. It may be noted that the experimental data used
in this figure are different from Capart et al.*. It has
been confirmed through personal communications
that the data given in Capart et al.” is partly in error.
We have obtained the correct data from the first
author for use in this paper.

Fig.3 compares computed and observed
depth hydrographs at three locations along the pipe.
The observed depth hydrographs were obtained by
piezometers. The model results compare reasonably
well with the recorded data in this figure as well.

The model is now applied to conduits of
rectangular cross-sections. The computations are
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carried out for conduit of length 100m and the base
width is assumed to be 1m. The Ax is 1m. The
conduit lies horizontal and is frictionless. The
computations for these cases are also carried out
with a slot width equal to 10% of the conduit width.
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Fig.4 Reflected surge in a rectangular conduit.
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Fig.5 Surge entry and pressurization from upstream.

In the first case, a uniform flow of Im
depth and velocity 2 m/s flows through the conduit.
At the start of the computation, a zero outflow
condition is imposed at the downstream end that
simulates sudden closure of the conduit. A surge is
formed which travels upstream leaving still water
behind. For the first run, it is assumed that the
conduit is open at the top, so that the flow is never
pressurized. Thereafter, the conduit is closed at 1.5m
height. This causes the conduit to pressurize from
the downstream end as the surge is formed. The
water surface profiles, for open as well as closed
conduit, at 5s, 10s, 15s and 20s are shown in Fig.4.
It may be noted that for an open conduit, the

analytical solution is also available. The numerical
results perfectly agree with analytical solution but
the analytical solutions are not shown in the figure
for the sake of clarity. As can be seen from Fig.4,
the piezometric level rises higher than the fully open
conduit case, which is expected. It is also noticed
that at the interface between free-surface and
pressurized zone, there are some oscillations.

In the second case, the conduit has 1m
deep still water in the beginning and is closed at the
downstream end. A constant discharge of 2.0 m*/s is
imposed at the upstream end, which creates a surge
that travels downstream. As in the previous case, the
result for open conduit is obtained first. Thereafter,
the conduit is closed at 1m height. This generates
pressurized flow with larger piezometric heads and
faster celerity. The results are shown in Fig.5. It can
be seen that the pressurized flow reaches the
downstream end much faster than the case of fully
free-surface flow and at 10s and 15s, the pressurized
flow is travelling upstream after being reflected
from the downstream end. The analytical solution
for fully free-surface flow case is again not shown in
the figure for the sake of clarity but it is noted that
the computed results very well agree with analytical
solution for this case. The model reasonably
computes pressurized flow and its reflection.
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Fig.6 Sensitivity analysis for slot width

Finally, a sensitivity analysis is carried out
to examine effect of the size of the slot on the
solution. The conduit is 1m wide and 1.5m high
with 1m deep water flowing at 2 m/s as initial
condition. The propagation of reflected surge
following sudden closure of the downstream end is
simulated with different ratio r of slot width, b, to
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conduit width, b. Five values of r, 0.5, 0.25, 0.1,
0.05, and 0.01, are used. The computed results at
20s are shown in Fig.6. It is seen from the figure
that the piezometric level does not change much
when r is reduced further from 0.1 and the celerity
also becomes only slightly faster. On the other hand,
it is seen that oscillations originating at the interface
between free-surface and pressurized flow propagate
throughout the surge and their amplitude increases
considerably. Based on the results, it is feit that 0.1
is the most reasonable value for r. However, this
needs to be verified more extensively before a final
conclusion can be drawn.

7. CONCLUSIONS

Roe’s flux-difference splitting scheme has
been applied to free-surface-pressurized flows
utilizing the concept of the Preissmann slot. The
resulting model has been verified with experimental
data for flow in pipes. The model’s applicability has
been tested with applications to propagation and
reflection of surge in rectangular conduits. The slot
size used in the model is 10% of the width of the
conduit. This value, besides giving accurate results,
has been found to be most reasonable through
sensitivity analysis. This work shows that the Roe’s
scheme, with all its good features ascertained in case
of free-surface flows, can also be a very good tool
for simulating free-surface-pressurized flows. The
work is continuing to enhance the formal accuracy
of the present model and include internal boundary
conditions for simulating branching of channel as
well as free-surface-pressurized flow in pipe
networks.
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