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The present paper shows the relevance of a new approach of using back propagation neural network
(BPNN) in storm runoff estimation by using near surface soil moisture. Intensive field observation and
field experiment conducted to observe the behavior of a forested catchment in Tono area is presented. The
results obtained by numerical experiment using BPNN were tested by the field experiment and catchment
observations. Both the experiment and field observations supported the results of the previous studies.
The field experiment showed that the importance of litter layer in the direct contribution to runoff was not
so significant. It was observed that the highly conductive soil layer underlying the litter layer and
overlying the less macroporous soil zone with low hydraulic conductivity was the chief contributor to the
total runoff in the study area. The field observation showed that the main contribution to the total storm
runoff was from the channel system that received the runoff from such layers as in the field experiment.
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1. INTRODUCTION

At the small catchment and hillslope scales, soil
moisture is a function of topography, vegetation and
soil characteristics (Western et al.”). The role of soil
moisture in the runoff generation is important in a
steep forested catchment even in humid region due
to rapid movement of subsurface flow (both
translatory and macropore). Watanabe”? has
mentioned the role of near surface flow in the
forested catchment and modeled storm runoff using
three-dimensional ~ finite  element  technique.
However, the extensive data requirement and huge
computational time required make such fully
distributed physically based models (Beven®;
Grayson et al.¥) less popular in practical uses.
Artificial neural network (ANN) models have been
recently reported in the literatures as being simple
yet useful in many situations. Recently, Gautam et
al. ¥ has generalized these available ANN models
for runoff studies into two categories. These
include, (a) autoregressive type ANN models which
utilize past observed discharges and (b) pseudo

rainfall-runoff type ANN models which make use of
past observed discharges as well as past observed
rainfall for future runoff estimation. Both of these
categories of models cannot be used for design and
planning purposes as no catchment characteristics
are included in the input data sets of such models
(Liong et al. © ). The present paper reviews the
present authors' recent new approach of applying
ANN by utilizing catchment-based data. Such
recent past studies by authors, although important,
lack the substantial field observations and
experimental studies to support the selected model
and hypothesis on which it is based (Fig. 1). The
test of models in the past study was mainly done by
the evaluation of the models in the testing phase.
The present paper is mainly concerned with
enhancement of the verification process with the
help of direct field observations and experiment.
Among other important aspects of the runoff
study in hydrology, the storm runoff generation
process is highly controversial in the perspective of
pathways followed by the storm runoff (Pearce et
al.”). In the present study, we present the
importance of soil moisture in the runoff generation
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processes without going much into the controversy
of the runoff pathways. With these themes this
paper is organized into the following sections. First,
the inferences from the soil moisture data from our
study of variation of soil moisture and results
obtained from the numerical experiments (Gautam
et al.”) will be briefly presented. In the subsequent
sections we present our detailed field observation
and small-scale field experiment carried out at a
new sub-catchment in the Tono area.

2. RUNOFF MODELING WITH BPNN

Researchers such as Watanabe” have mentioned
the importance of near surface soil moisture in the
storm runoff generation. Recently Gautam et al.”
have made storm runoff generation study in the
Tono area located in Gifu prefecture of Japan. In
one of the subcatchment of the Tono area, the
authors analyzed the soil moisture data of various
depths in different locations along a hillslope. For
the runoff estimation purpose, they found the
importance of 40-cm soil moisture depth at
downmost slope location over other locations and
depth in the normal storm condition (extreme events
excluded). Numerical experiments were carried out
with the formulation of BPNN models. The
application of BPNN was made in the premise that
its use is considered a favorable choice when the
relationship between input and output is not so clear
and particularly when the problems are of non-
linear nature (Hsu et al.*). In the field of hydrology
where the non-linearity is pervasive, neural network
modeling can be of substantial worth. The general
modeling approach adopted in the study in using
BPNN is shown in Fig. 1. A brief introduction of
BPNN is given below. However, the details of
BPNN modeling approach in the hydrological
runoff estimation perspectives can be found in Hsu
et al.¥, Minn and Halls®, Gautam'®, Dawson and
Wilby'? and Tingsanchali and Gautam'?'¥. A more
detailed information about theory and applications
of BPNN in the general perspective can be found in
Ebberhart and Dobbins'* and Hecht-Nielsen'”.

(1) Neural Network modeling approach

Three layer feed forward network based on back
propagation algorithm has remained popular in the
field of hydrology, runoff analysis in particular.
The network consists of an input layer consisting of
node(s) representing various input variable(s), the
hidden layer consisting of many hidden nodes, and
an output layer consisting of output variable(s). The
number of hidden nodes is determined by trial and
error process. Input data are often normalized with
suitable methods. The output data is usually

normalized in the range of 0.1 and 0.9 when logistic
activation function is used. The input nodes pass on
the input signal values to the nodes in the hidden
layer unprocessed, which is distributed to all the
nodes in the hidden layer depending on the
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Fig. 1 Flow chart showing modeling approach using BPNN

connection weights between the input node and the
hidden nodes. In the hidden nodes the inputs
(0....n;) from the input layer are summed (Eq. 1).
The summed input (x;) is then processed using an
activation function. The logistic function, which is
widely used in ANN applications, yields the output
(X;) at that node (Eq.2).

x; = Iw, (1)
i=0

In the Eq. 1, I, represents input from bias node and
has the value of 1.
1

X, = — (2)
l+e ™
In the analogous manner the processed signals from
the hidden nodes are distributed to the output nodes
(1...n,) where all the incoming signals from the
hidden nodes (0...ny) are summed and processed.
Finally, the actual and network outputs are
compared, the squared of the error is computed and
summed for all available patterns . The computed
error is propagated backward from the output nodes
to the hidden nodes and from the hidden nodes to
the input nodes based on the gradient delta rule. The
connection weights are then updated to minimize
the total network error. In the weight updating, two
parameters namely momentum and learning
parameter are introduced. The function of the
learning parameter and the momentum rate is to
speed up the fraining process and avoid oscillation.
However, there is no specific rule for selection of
the values of these parameters and the determination
is subjected to trial and error estimation. Adopting
one set of value, the training process is started and
depending upon the characteristic of the training
process i.e. whether the error reduction of the
network is slow or rapid or the network 1is
oscillating, these parameters are adjusted by trial
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and error process. Once the training process is
satisfactorily completed, the final weights are saved
and used for the evaluation of the models in the
testing phase.

with other inputs. Sensitivity analysis was carried
out with 40-cm soil moisture content by formulating
more ANN models with the addition of some other
inputs namely discrete precipitation data and other
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Fig. 2 Comparison between observed and computed discharge, training phase. The figure represents multiple-events
joined end to end. (Event 1: 1-300; Event 2: 301-450; Event 2: 451: 665 timesteps).
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Fig. 3 Comparison between observed and computed discharge, testing phase. The figure represents multiple-events joined
end to end. (Event 4: 1-70; Event 5: 71-219; Event 6: 220: 330 timesteps).

(2) Application of BPNN in recent runoff study

Six separate major runoff events were considered
in the study: 3 in the year 1997 and remaining 3 in
the year 1998. Split record procedure was adopted
and runoff events of the year 1997 and 1998 were
considered for training and testing phase
respectively.

Many ANN models were formulated based on
different inputs in the input layer. The inputs
considered included soil moisture content at various
locations and depth along a hilislope and discrete
precipitation data. It was found that the
consideration of discrete precipitation alone resulted
mto poor simulation both in training and testing
phase. This indicated that discrete precipitation data
alone cannot furnish enough information for runoff
estimation for this catchment. It was observed that
the consideration of 40-cm depth soil moisture at
downmost location gave better results compared

catchment data (soil moisture at other depth and
locations). These new models were trained and
tested in the similar way. It was found that, the
consideration of other inputs decreased the model
performance. Thus with these numerical
experiments the importance of 40-cm soil moisture

Table 1 Average Training and Testing phase EI of Models

Model | Input (soil | Training Test Phase
Name moisture) Phase EI El
ANN1 | (t-At) 40D 0.87 0.70
ANN2 | (t-4At) 40M 0.62 0.63
ANN3 | (AL 248 0.63 0.48

t-3At, t-4At) 40D
ANNg | Average of 0.88 0.46

(t-At, t-2At,  t-

3At, t-4At, t-

5At, t-6At) 20D
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content data at downmost location was concluded.
The importance of such soil moisture data at
downmost location signifies two things-the
importance of soil moisture and the contribution of
upslope contribution area. Such a consideration of
the soil moisture nearer to the river valley side is
useful in the catchment study as it gives an
integrated effect of soil, vegetation and topographic
contribution of the upslope area. The Nash and
Sutcliffe efficiency index (EI)[Nash and Sutcliffe'®]
of the selected models considered in the numerical
experiments are shown in Table 1. In this Table, D
and M refer to the downmost location and midslope
location respectively; ‘t’ refers to the time for which
runoff estimation is made and At represents
timestep, which in the present study was taken as 10
minutes. Fig. 2 and Fig. 3 represent the results of
ANNI model for training and testing phase
respectively. Due to limitation of space, only the
results of ANN1 model could be shown here.
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Fig. 4 Topographic map of Shomasama Subcatchment
(Elevation is in meter and contour interval is 2 m)

3. FIELD OBSERVATIONS AND

DISCUSSIONS

In a very recent study the above results in other
area in Tono was tested with the help of intensive
field observation and small-scale field experiment
in Shomasama sub-catchment (shown in Fig.4)
located also in the same Tono area. This sub-
catchment has an area of about 1.5 ha and has an
average slope of about 42%. The western part of
this sub-catchment is less steeper than the
headwater and eastern part.

The authors’ observation in the sub-catchment
and along the stream during both storm period and

non-storm period revealed following features.

(a) The tributaries and main channel starting from
the headwater part was the chief contributor to the
storm runoff. The contribution from the stream bank
could be seen but not as significant as the tributaries
which were shallow and received mainly the
contribution of near surface layer underlying the
litter layer (consisting mainly of dead leaves,
decayed leaves and dense small root zones). It was
however, observed that in a rather quick time, the
soil moisture condition along the stream bank
changed.

(b) Importance of return flow due to presence of
low conductivity zones was observed at many
locations. At many locations soil profile consisted
of the litter layer underlain by very shallow soil
overlying the weathered gravel with very low
hydraulic conductivity.

(c) The contribution of deep groundwater flow to
the stream runoff could not be found in this
watershed. A similar finding was observed by
Gautam et al)’ in another sub-catchment in the
Tono area by analyzing the deep water table data.
(d) In the rainfall events during the intensive field
study, it was observed that the litter layer with its
high hydraulic conductivity underlaid also by high
conductivity layer did not contribute much to the
stream runoff.

(e) The walking trail in the area was only found to
be the contributor of the Hortonian overland flow.
However, the main walking trail did not contribute
to the sub-catchment under consideration.

Channels (tributaries) formed along the pathways
created along hillslope hollows reflect the
importance of topographic characteristics. The
characteristics of the soil profile on the other hand
reflect the general soil moisture variability along the
vertical profile and importance of soil moisture at
near the surface soil following the litter layer. It
may be said that there exists a correlation between
the near surface soil moisture condition along the
tributaries and the wetness condition along the
downslope location along the bank of the stream. As
such, the soil moisture measured near to the side of
the river may be used for runoff estimation.
However, a better approach for runoff estimation
using BPNN can be to consider soil moisture at
various locations along such hillslope hollows at
downslope positions.

As mentioned above, return flow was observed in
the field at many locations and thus can be said to
be important in this sub-catchment. The soil along
the sub-catchment consisted of upper 8-10 cm thick
litter layer underlain by the soil consisting of many
root holes and some gravels. This is followed by
gravelly soil. But as mentioned above, in this steep
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sloped catchment, at many locations different type
of soil profiles consisting of litter layer underlain by
low conductive soil zone were observed. In such
case, water seeping down will form a saturated
wedge which due to absence of lateral flow
pathways returns back to surface and travels along
the surface along the path defined by topography. In
the process it infiltrates again till it reaches the
channels or stream through highly conductive near-
surface layer, thus again making soil moisture along
such hillslope location important.

4. FIELD EXPERIMENT AND

DISCUSSIONS

The major purpose of the experimental study was
to study the reason of better performance of ANN
models in the previous study and to get insight into
the physical processes of the runoff generation in
the area.

Although extreme caution is needed in extending
the result of the small-scale field experiment to the
catchment scale or hillslope scale, this kind of
simple field experiment can provide some
qualitative information about the catchment
characteristics for runoff generation.
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Fig. 5 Front view of the experimental site with position of two
layers of troughs shown.

A 1.1 x 1.6-m pit was dug nearer to the ridge
location. As shown in Fig. § a collection trough was
set at distinct interface between organic humus layer
and the soil underneath and another trough was set
at a location above a layer of Seto group comprising
of relatively recent deposit of land slided materials .
Seto group belongs to Pliocene age and consists
mainly clay and unconsolidated conglomerates as
its chief constituents. Due to large boulders and
gravels of Seto layer in the experimental plot, it was
not so easy to form water tight collection trough at
the junction and the water collected at the bottom of
the pit was significant. Such water collected at the
bottom of the pit was in effect a contribution from
the leakage around the second trough location and
also to some extent from the underlying layer below

this trough location. On the day of 30 July 1999,
with sunny weather, artificial rain of intensity 40
mm/hour was applied for about 102 minutes. The
initial condition of soil could be considered as moist
due to the artificial rain experiment on the previous
day and wet antecedent precipitation condition due
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Fig. 6 Distribution of gravels in the soil profile at the
experimental site (Front view).
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Fig. 7 Distribution of root zones in the soil profile at the
experimental site (Front view).

to rainfall on days before.

It was observed that the contribution started from
the lower layer, which was due to formation of
saturation wedge around the low conductive
boulders of Seto layer. The contribution of upper
layer was nominal compared with the lower layers.
This may not be unusual given the high vertical
hydraulic conductivity of this zone followed by the
high conductive macroporous soil zone. The gravel
and root zone distributions at the experiment site
shown in Fig. 6 and 7 respectively supports this
behavior of the soil profiles. It was further observed
that the lower horizon started to contribute earlier
than the litter layer.

The total contribution of litter layer was much
smaller than the lower layers. Figure 8 shows the
throughflow contribution from the litter layer and
lower layer (excluding leakage). The contribution
from this layer was just about 0.275 % of total
rainfall input compared to 21.1 % from the lower

layer (inclusive of leakage and loss from the
bottom of the pit).
In the backdrop of controversy regarding

importance of macropore flow, observation of
contribution of the macropores was made during
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Fig. 8 Throughflow collected at two different depths due to
40 mm/hour artificial- rainfall.

artificial rainfall experiment. It was observed that
pores as rootholes etc. of size of the range § mm
only were able to provide a flow pathway that at
after sufficient time of rainfall. This is due to the
reason that it takes some time to prevail saturated
condition along the macropore pathways provided
by the bigger sized rootholes. Under the high
intensity rainfall condition, the rootholes of size of
the order of 8 mm contributed flow along the root
zone pathways. Roots of size smaller than this was
found to have little influence in the direct
contribution to the runoff.

The flow stopped just about 30 minutes after
cessation of rainfall. The cessation of flow
immediately after stoppage of rainfall was due to
the nature of soil and high rate of evaporation on the
sunny day of experiment.

5. CONCLUSIONS

Intensive field observation along with field
experiment was conducted to observe the behavior
of one of the forested catchments in Tono area. The
field experiment and catchment observations were
quite helpful to provide justification to the results of
previous results of storm runoff estimation using
BPNN model that utilized soil moisture data.

The direct contribution of the litter layer to runoff
was not significant, as was found by both field
experiment and observations. Instead, the highly
conductive soil layer underlying the litter layer and
overlying the less macroporous soil zone with low
hydraulic conductivity was found to be the main
contributor to the stream runoff. The observation of
sub-catchement during rainfall period showed that
the channel system, which carried runoff chiefly
from such layers (as in the field experiment), were
the main contributors to the total storm runoff. In
the process of estimation of runoff by BPNN
models, the soil moisture at downmost slope
location or hillslope hollow locations at the depth

below litter layer and above the relatively less
conductive layer can be said to have substantial
importance.
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