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The motion of a 2-D heavy turbulent thermal is studied by large eddy simulations. The governing
equations consist of the filtered 2-D Navier-Stokes equations and mass conservation equation and are
solved using the combined cubic spline (CCS) scheme. The eddy viscosity is evaluated by the

Smagorinsky model.

The comparisons of computational results of main flow characteristics, including shape, size, mass
center velocity and average buoyant force, with experimental results show that the numerical model gives
a good description of the thermal. It is also demonstrated from the computation that the internal flow of
the thermal is characterized by two symmetrical vortex structures and the density excess becomes a

double-peak distribution after some distance.
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1. INTRODUCTION

A heavy turbulent thermal is defined as an
instantaneous release of dense fluid into a less dense
ambient fluid (see Fig. 1). The dense fluid will
freely fall and spread under the influence of its own
buoyant force. A practical example of the thermal is
dumping sludge or soil into coastal waters using
bottom-dump barges, which is often encountered in
construction of man-made islands etc. If the density
of the fluid is less than that of the ambient, it is
referred to as a light turbulent thermal. The upward
motion of the hot cloud formed by explosion is an
example of a light turbulent thermal. Essentially,
both heavy and light thermals have the same internal
flow structure, so that they are usually referred to as
turbulent thermals.

To understand the flow characteristics of the
thermal, a great deal of study has been performed.
In 1957, Scorer” obtained empirical equations on
the width and the front position of the thermal.
Wang? developed a model for the motion of a
turbulent buoyant thermal in a calm, stably stratified
atmosphere, based on the conservation of mass,
vertical momentum and enthalpy. Using this model,
the average motion of the thermal is described in
terms of its initial density difference, velocity and
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Fig.1 Definition sketch of heavy turbulent thermal

effective radius as well as mass entrainment
constant, effective drag coefficient and turbulent
dissipation rate. But, the added mass is ignored in
this model. In addition, the model was not verified
by experimental data. Escudier and Maxworthy”
proposed a model to describe the average motion of
the thermal based on the conservation of momentum
and mass. In this model, the added mass is included.
But the drag force acted on the thermal body is
ignored. Again, this model was not verified by
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experimental data. Baines and Hopfinger?
experimentally and theoretically investigated the
thermal with large density difference and indicated
that the effects of large density difference are
confined to the region close to the source. Akiyama
et al.” conducted a series of experiment on 2-D
heavy turbulent thermals and developed an integral
model to predict such flow characteristics as half
width, velocity and average buoyant force. In this
model, both added mass and drag force are included.
The entrainment coefficient and the drag coefficient
are determined based on a large number of
experimental data. Nakatsuji et al® made an
experimental study on particle thermals, which are
formed by an instantaneous release of a cloud of
particles into water, and found that the average
motion of the particle thermal is close to that of the
thermal formed by dense fluid if the initial volume
of cloud is relatively large and the size of particles is
relatively small.

The aforementioned thermal models are
essentially based on similarity in thermal shape.
Such analyses are useful to understand the
fundamentals of the motion of the thermal in a fully
developed state. However, heavy turbulent thermals
in practice take place in complicated conditions,
such as the presence of a density gradient, the
occurrence of a current, the limitation of ambient
water depth and others. It necessitates development
of a numerical model. Li” studied particle thermals
experimentally and numerically employing a mixing
length model, and found that the velocity of the
thermal approaches the terminal velocity of the
individual particles and the growth rate of half width
of thermal decreases with the magnitude of the
settling velocity of particles. Tamai and Muraoka®
investigated turbidity transport produced by direct
dumping of soil using the two-fluid k- ¢ turbulence
model and found that the induced flow is depressed
by slowing down the dump of soil.

In the present work, an attempt is made to
develop a numerical model for a 2-D heavy
turbulent thermal by using the large eddy simulation
(LES) with the Smagorinsky model.

2. MODEL FORMULATION

Applying the grid filter to the 2-D
incompressible Navier-Stokes equations and the
equation of conservation of mass, we can obtain the
governing equations
oy,
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where U, is the large-scale quantities of velocity

component in the direction X ; P the large-scale
pressure minus the hydrostatic pressure at reference
density p,; o the large-scale density; A p the
density excess (= - p, ); g, the specific body force
in the direction x;

u,Ao the fluctuating

velocity and density excess. u; u the correlation

terms between fluctuating velocity due to space
averaging. By using eddy viscosity concept, the
correlation terms take the form
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where v, is the subgrid scale eddy viscosity; k the
turbulent kinetic energy ; 6,, the Kronecker delta

function. The last term in Eq. (4) represents the
normal stresses and can be absorbed in the pressure
terms of the momentum equations.

In the Smagorinsky model, v, is calculated by

v, =(Cs A)2{Sl )
where A is the filter width, Cs is the Smagorinsky
constant, and lg\ =(2§1 ng 17/2 is the magnitude of

large-scale strain rate tensor in which S, , is defined

by
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The term -u/A o’ in Eq. (3) is generally assumed to
be

= B2 @

where Scs is the subgrid turbulent Schmidt number
and is defined as the ratio of eddy diffusivity of
momentum to eddy diffusivity of matter.

Using the operator-split algorithm, the
governing equations for flow, namely, Egs. (1) and
(2) are divided into the following two steps:

1) Advection and Diffusion
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2) Pressure
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The density excess and velocity are obtained by
solving Egs. (3) and (8) using the combined cubic
spline (CCS) scheme described below. The pressure
is obtained by solving the Poisson type equation
deduced from the algebraic manipulation of Eqs.(9)
and (10).

The CCS scheme for 2-D advection and
diffusion problems is as follows. The 2-D advection
and diffusion equation can be expressed in the form

2 2

ﬁ+uaf of Daf Dif— an

ot ax 8 y ax? ay*
where f is a scalar, u and v are velocity component
in x and y direction, and D is a diffusion coefficient.
If the time derivatives are expressed by a combined
algorithm, and the spatial distribution of scalar f is
fitted by a series of cubic spline passing through

grid points  {X;, ¥, },{X2, ¥ }ren{Xpp ¥}, =1 2,000

for x-direction and {X,,¥,},{X,,¥2}s-»{X,> ¥}, I=1,
2,7+, I for y-direction ( see Fig.2 ), Eq. (11) is
transformed to
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6 is a weight coefficient (0= 6 =1), for explicit
scheme 6 =1, for fully implicit scheme 6 =0, for
the scheme similar to Crank-Nicolson 6 =0.5. For
the cubic spline interpolation passing through the

—

Fig.2 Sketch of mesh for 2-D CCS scheme

grid points {X;,y },{Xp,¥ }sn{Xp Yy}, We can
obtain”
Axl el SO 8 M n Ax:—l + Axx MX AXI MX
6 1- 1] 3 I,J 1+1]
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in which Ax, =x,,, —X;

Mx} and Mxj; are determined according to the
boundary conditions. Then, Mx}‘d(i =2,I-1) can be

determined by Eq. (13). Nxﬁj(i =1,1) is calculated
by the equations
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(15)
Similarly, for the cubic spline interpolation passing
through the grid points {x,y;},{X,,¥2}sees

{X,,¥;}, we can obtain

At ppn T DY
6J M 1_] 1 —————3 J Myl,J +—6—J_My1n,1+l =
fxl,‘j+1 B fln_] fl,} fln] 1 (J =2,]- 1)
AYJ AyJ—l
(16)

in which Ay, =y ;-y,.

My, and My, are determined according to the
boundary conditions. Then, Myfil(i:2,1—1) can be
determined by Eq. (16). Ny} (j=1,J) is calculated
by the equations
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Fig3 Photographs and computed velocity and density excess fields
(a),(c) and (e) are photographs; (b),(d) and (f) are computational results
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Finally, £ (i=1,2,-.1 and j=1,2,-J) are

obtained by solving Eq.(12). If 6 isnotequalto 1,
iteration technique is employed in solving Eq.(12).
The CCS scheme has been found to be
advantageous in solving the advection and diffusion
equation because its remarkable accuracy and
simplicity as well as the ability to be easily extended
to multi-dimensional problems'?.

3. THE EXPERIMENTAL AND
COMPUTATIONAL CONDITIONS

In order to verify the numerical model,
experiments on 2-D heavy turbulent thermals were
performed in a glass flume of 7.5m length, 1.0m
height and 0.im width. Salt solution was used to
produce the thermals. The initial total buoyant force
W, was fixed at 0.001764 m’/s®. W, is defined as
W, =A,g(0,—0,)/ 0,, where p, and A, are
density and cross-section area of the source, g is the
gravity acceleration. The dense fluid was released
into acquiescent water by a device which is placed
just above the water surface. The motion of thermal
was recorded by a video camera and the pictures
were analyzed to obtain such flow characteristics as
shape, size (H, L), mass center velocity V and
average density B. The experiment was repeated
five times under the same conditions to reduce
uncertainty.

The computational domain is a rectangle of
2.0m width and 1.4m height. All boundaries are
considered as a slip wall boundary. The source of
the thermal is a circle with a radius of 0.04m and is
centered at the water depth = 0.1m. The thermal is
assumed to start from rest. The total buoyant force
has the same value as that in the experiment. The
density of ambient fluid is 1000 kg/m’. Grid size is
0.01 mX0.01 m. The time step size is 0.025 s.
The values of Cs and Scs are Cs=0.16 and Scs=0.1,
according to the study on inclined plumes'".

4. RESULTS

Fig.3 shows experimental photographs of the
thermal as well as computed velocity and density
excess fields at time t=3, 6 and 10 s. Itis seen
from this figure that shape, size and mass center
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Fig.4 Mass center velocity V as a function of z

velocity of the thermal obtained by computation
agree well with that by experiment, although the
shape of the thermal in experiment is slightly
irregular because of the unsteady nature of the flow.
The wake of thermal appears in both computational
and experimental results. However, the buoyancy
loss to the wake of thermal is not significant to the
motion of the thermal, because the buoyant force
within the wake is relatively small. For example, in
the case as shown in Fig.3, the buoyancy loss to the
wake is about 4% of the total buoyant force. This
confirms that in the theoretical treatment for the
conservative thermal the assumption that no
buoyancy is lost to the wake of thermal seems to be
valid®. The shape of the thermal changes gradually
from a circle to an ellipse with the half width-to-
length ratio H/L of about 0.62 at t=10s in both
experiment and computation. We also found that the
velocity fields of two symmetrical vortex structures
are established soon after release. The velocity
fields (Fig.3) reveals that the formation of wake is
due to the velocity differences between the main
part and the rear part of the thermal. Since velocity
at the rear part is much smaller than the main part,
the rear part is left behind as the main part moves
forward. The maximum of velocity near the center
of the thermal is about 3 times larger than mass
center velocity V. During the early stages of the
motion, the maximum of density excess appears
near the center of cloud, and after some distance the
phenomenon of double-peak distribution appears
due to the entrainment of less dense fluid into the
central part from the rear of thermal.

Fig.4 presents the mass center velocity V as a
function of distance from the source z. This figure
shows that the motion of the thermal has a fast
acceleration and slow deceleration phase. The mass
center velocity V reaches its maximum of 0.078 m/s
at z=0.04m. Fig.4 also show that V is almost

proportional to z™""? during the deceleration stage.
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Fig.6 Average buoyant force B as a function of z

The symbols in the figure are average results of five
runs under the same experimental conditions.

Experimental study by Akiyama et al.” found
that half width of the thermal H increases linearly
with distance z and the value of growth rate dH/dz is
around 0.48. Baines and Hopfinger® also found the
linear relationship between H and z in their studies
on light thermals. Fig.5 shows that the
computational results of H almost increase linearly
with z and the values of H are close to the
experimental data. The calculated value of dH/dz is
found to be 0.45.

The average buoyant force B is defined as
B=g(0o—0,)/p,, where p is the average density
of the thermal. Fig.6 shows that B is almost

proportional to z?. This is consistent with the
theoretical result obtained by Akiyama et al.”

5. CONCLUSIONS

A large eddy simulation of 2-D heavy turbulent
thermal has been performed. The eddy viscosity is
evaluated by the Smagorinsky model and the
governing equations are solved by the CCS scheme.
The comparisons of computational results of main
flow characteristics, including shape, size, mass

center velocity and average buoyant force, with the
experimental results show that the numerical
simulation gives a good description of the thermal.

It is clearly demonstrated from the computation
that the internal flow of the thermal is characterized
by two symmetrical vortex structures and the
density excess becomes a double-peak distribution
after some distance. The computational results also
show that the buoyancy loss to the wake occurs, but
it does not affect significantly to the motion of the
thermal.
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