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Artificial neural network is an advanced topic which provides hydraulic and environmental engineers
with a strong tool for estimating missing information to be used for design purposes and management
practice. In this study, a neural network is used to estimate the natural sediment discharge in rivers in terms
of sediment concentration. This is achieved by training the network to extrapolate data collected from
reliable sources. Selecting an appropriate neural network structure and a training algorithm as well as
providing data to the network are addressed using a constructive algorithm called back-propagation
algorithm (BPA). Sensitivity analysis is performed for flow and sediment parameters. The predicted
sediment concentrations are agreed well with the measured ones.
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1. INTRODUCTION

Dynamics of sediments in streams and rivers is
a complex process and it depends on variety of
variables and parameters. Several approaches have
been presented to estimate sediment discharge by
using similarity principle", dimensional analysis®,
analytic power models”, and etc. To get a discrete
formula to be used, some effective parameters
should be disregarded, and the accuracy of the
predicted results will decrease. Recently, neural
networks have been applied to many applications in
science. The technique is not deeply examined yet
for fluvial engineering and sediment transport. This
paper evaluates the applicability of neural networks
approach on sediment transport and environmental
problems using the back propagation algorithm®.
Several trials are done to decide the effective
input parameters and to design the suitable
architecture of the network. Results showed that
neural networks approach is providing a good
prediction compared to conventional models.

2. NEURAL NETWORKS MODEL

(1) The network architecture

Artificial neural network (ANN) is a net of
simple units, each possibly having a local memory.

Units are connected by unidirectional links,
which carry numeric data. The semilinear feed
forward net" has been found to be effective system.
for learning discriminates for patterns from a body
of examples. Outputs of nodes in one layer are
transmitted to nodes in another layer through links
that amplify or inhibit such outputs through
weighting factors. Except for the input layer nodes,
the net input to each node is the sum of weighted
outputs of the nodes in the prior layer. Each node is
activated in accordance with the input to the node,
the activation function of the node, and the bias of
the node. Figure 1 shows the general feed-forward
multilayer net, including hidden layer. The input
pattern constitutes the inputs to the nodes in layer i
representing a set of variables (x;.X,...,x,). Outputs
of nodes in that layer may be taken equal to inputs,
or inputs can be normalized to be scaled to fall
between the values of 0 and +1. Output layer
generally consists of multiple nodes (0,,0,, ...oj),

sometimes, it has a single variable o. A node, Fig. 2,
simulated neuron, is the basic block of the network.
The node sums the product of inputs and
connection weights from nodes of previous layer
and then limits it by nonlinear threshold function.
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Fig. 1 Feed-forward multilayer network.

The net input and output to the j'th node are
nel = w, o (1)

0o, = f(net) )
where f is the activation function. In calculating the
output of a node, activation function may be in the
form of a threshold function, in which output of
node is generated if a threshold level is reached.

(2) General delta rule ( GDR)

In the learning phase of training such a net, the
pattern X, is presented as input, where p is pattern
number. The net is asked to adjust the set of
weights in all connecting links. Once this
adjustment has been accomplished, another pair of
x, and t is presented, and ask that the net learn
that association too. In general, actual outputs 0

will not be the same as the target or desired value
t, For each pattern, square of average error is

1
E = 3 Z( ly = Oy 2 (3)
k

The derivative of the error function E with
respect to any weight in the network is in
proportional to the incremental change of weights.

For general delta rule, the change of weight
for the pair from j'th to i'th nodes can be set as

E
Aw = — -é—— = 85]0, 4

where5J = —OE/d)Jf (netJ), ¢ is the learning rate,
and [ (net))=cv,/ et .

Sum of the products
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Fig. 2 Functional model of node simulated neuron.

The deltas at internal node can be evaluated in
terms of the deltas at an upper layer. In particular,
the o, is represented by a sigmoid function”,

1

0o =
! 1+exp[—a(2w,,o, -0)]

)

where o is the shaping ratio of function f, and Gi

serves as a threshold or bias. Then, the followiﬂg
expressions may be presented, for output and
hidden layers, respectively.

5/7/( = (tpk - Opk) Opk (1 - Opk) a (6)
5/7/ =0y (-0,)a Z 6/7/( Wy (7)
k

(3) Back-propagation algorithm
Using the back-propagation procedure, the net
calculates prJl for all the Wy in the net for that

particular p. This procedure is repeated for all the
patterns in the training set to yield the resulting

AWii for all the weights for that one presentation.

The correction to the weights are made and the
output(s) are again evaluated in feed-forward
manner. Discrepancies between actual and target
output values again result in evaluation of weight
changes. After complete presentation of the all
patterns in the training set, a new set of weights is
obtained and new outputs are again evaluated in
feed-forward manner. This is repeated until a
specific tolerance for error is obtained.
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3. ESTIMATION OF SEDIMENT DISCHARGE

The pertinent variables in river hydraulics are
the water discharge per unit width, q, water depth, h,
longitudinal slope, S, bed shear stress, 1, sediment

discharge per unit width, q, median diameter, d,,,

sediment and fluid density, p_ and p, kinematic
viscosity, v, acceleration gravity, g and fall
velocity, wy. For natural sand, parameters pg and

p are constants. C =q/q, and 7 can be represented in

terms of shear velocity, u, =./ghS. These

parameters are presented in dimensionless form as,
C.=f(v.p,w,/u. .S, hid, ,F ,R.,h/B) (8)

]

where y =hS/sdg, is the dimensionless tractive

shear stress, s is the specific gravity = 1.65 for sand,
¢ =u,/u is the velocity ratio, uy, is the mean

velocity, w, /u. is the dimensionless suspended

sediment parameter, h/d,, is depth scale ratio,

F.=u,/

n |\ gh is the Froude number, R, =wu.ds,/v
is the shear velocity Reynolds number, and A/B is
width scale ratio. The net is set up with the 8
parameters of Eq. 8 as input pattern, and sediment

concentration Cg as the output pattern. The network

is trained with well shuffled data. Input layer
contains 8 neurons, while output layer contains one.
Between them, there is another hidden layer
contains suitable number of neurons (under
investigation).

(1) Data for learning and verification

Measuring total sediment discharge in rivers is
difficult in normal conditions. The available data
sets for flow and sediments in rivers, which
comprise wide range of situations and contain the
total load discharge, are those of the Niobrara
River?, the Middle Loup River”, the Hii River®,

and the small streams’.

Table 1 Range of used data in learning and verification.

Variables Range

Tractive shear stress (W) 0.10 ~3.68
Velocity ratio ($) 4.10~15.0
Suspension parameter ( wo/us) 0.13~2.39
Longitudinal slope (S) |0.00041 ~0.00287
Water depth ratio ( h/ds) 152 ~ 6242
Froude number (F) 0.15~0.56
Shear vel. Reynolds no. (R.) 436 ~1355
Stream width ratio (h/B) 0.002 ~0.10
Sediment concentration (C;) 10 ~ 3240

Other published data are not used in learning to
eliminate their uncertainty of unmeasured load near
the bed surface. The data are consisting of 161 sets.

Accuracy of data depends on their publishers.
Half of the data are used for learning process. The
other half are used for verification. Ranges of used
variables are summarize in Table 1.

(2) Calibration of neural networks parameters
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Fig.3 Comparison between measured and
estimated concentration,C,.

The model is constructed with 81 shuffled data
sets (patterns). The original target output data are
destroyed during learning process. New results are
obtained for the 81 data sets. Number of neurons in
the hidden layer, the parameters o and ¢ are
determined by calibration through several computer
run tests. The parameter € is recommended to be in
the range of (0.04 to 0.10). The best fittings is
shown in Fig. 3, where number of neurons in the
hidden layer is 12, the parameter € is equal to 0.075,
and the parameter a is equal to 12.

Additional 80 patterns are added without target
outputs, C;. Estimated values are obtained. Fig. 4,
shows the verification between the measured and
estimated values for these patterns.
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Fig. 4 Verification of the presented model.
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4. SENSITIVITY ANALYSIS FOR WATER
AND SEDIMENTS PARAMETERS

Several experiments are conducted to examine
the sensitivity of the provided sediment parameters
in each pattern. With fixed model parameters, the
first run is carried out with the 8 input parameters
which mentioned above. Then, each parameter is
eliminated by turn from the group. A statistical
analysis is conducted for determining the accuracy
in each case.

Discrepancy ratio D~=C/C, is used for
comparison, where C. is the calculated total load
concentration, and C, is the measured one. The

mean value, D, and the standard deviation, o, are

_ N N _
Dp= % D”./N, azJZ(DN—Dr)z/N—l
i=1 1=1

, respectively. Also, the ranges of 25%, +50%,
and +75% of the predicted concentrations are
presented.

Table 2 Effect of flow and sediment parameters on results accuracy.

Inputs of flow and Number Discrepancy Ratio
sediment parameters ofdata | Mean |Standard Percent of Data in Range
sets Deviation[0.75~ 1.25 [ 0.5~ 1.5 [0.25~ 1.75
1.The full parameters in Eq. 8 1.03 0.40 65 87 94
2. Eliminating “wy “ 1.30 1.45 58 80 87
3. Eliminating “¢ “ 1.01 0.60 60 85 92
4. Eliminating  “ wy/Ux * 1.57 2.50 53 78 86
5. Eliminating S« 161 1.05 0.56 59 81 89
6. Eliminating  “ h/ds, 1.85 2.40 55 69 78
7. Eliminating *“F, “ 1.29 1.47 58 78 87
8. Eliminating “ Re« ™ 1.20 1.25 63 82 89
9. Eliminating  “h/B*“ 1.03 1.74 42 78 87

From Table 2, it can be concluded that the most
important dimensionless parameters in the group are
W, wo/us, h/d.F,, Rex and h/B. The parameters which
have effect less than 10% may be neglected without
fear of accuracy, such as, ¢, and S. The new group
of parameters is tested again after eliminating non-
effective ones. The functional form of new group is,

C.=f (v .wylue, hidsy.F, Ry h/B) 9)

5. COMPARISON WITH THE PREVIOUS
STUDIES USING TOTAL LOAD DATA

A comparison between the presented model
results and seven previous studies”'” is performed.
The analysis are shown in Table 3. Figure 5 shows
the best fit for results of the presented model and
Brownlie formula”, which gives better results than
others.

Table 3 Accuracy of formulas for total sediment concentration, { field data }.

Number Discrepancy Ratio
Mecthod of data Mean | Standard Percent of Data in Range
sets Deviation [0.75~ 125 [ 0.5~1.5 [0.25~1.75
I. Presented ANN model, Eq. 9 1.04 0.42 58 78 93
2. Engelund and Hansen (1967) 2.34 1.69 14 35 45
3. Ackers and White (dsg) (1973) 1.10 1.45 48 75 90
4. Yang (dso) (1973) 80 1.30 0.81 51 69 81
5. Brownlie (1981) 1.04 0.67 56 76 93
6. Shen and Hung (1972) 1.26 0.62 44 70 84
7. Laursen (1958) 0.55 0.89 8 20 60
8. Toffaleti (1968) 0.41 0.46 5 20 66
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Fig. 5 Comparison between the presented model and Brownlie formula.

6. EVALATION OF THE MODEL USING
SUSPENDED SEDIMENT DATA

Another group of 485 data sets are used for
verification. Those data were collected from the Rio
Grande River'™'"'?, the Mississipi River'”, and the
Sacramento River'”. Their measured sediment
discharge represents suspended load. The bed load
concentration, C, still needs to be determined.
Meyer-Peter and Muller formula'” for bed load is
used to calculate the unmeasured part. Thus, total
concentration C, is the summation of measured
suspended load concentration Cg and the
calculated bed load concentration C,. The sets
which have C<10 are excluded, see Table 1. Range
of variables is shown in Table 4. The Mississipi
and the Sacramento Rivers have some variables
with ranges wider than the used trained patterns

variables, therefore, their sediment concentration
can not be extrapolated. Thus, half of the Mississipi
River data are used as a new training patterns to
estimate the other half and the Sacramento River
sediment concentration. The comparison with other
formulas shows that the model gives best results in
some rivers, and one of the three best results in
others. If the trained patterns contain data with
wider range variables, the model accuracy will be
the best of all. Table 5, shows the error analysis for
results in all tested rivers using the ANN model
among the best 5 of 10 tested formulas®' for total

sediment discharge. The D, value of Nordin-
Beverage group is rather large because most of sets
have variables with extremely larger ranges than the
trained ones, see Tables 1 and 4.

Table 4 Hydraulic and sediment data for the tested rivers.

River Rio Grande Rio Grande Rio Grande Mississipi Sacramento
Variable (Nordin) (Nordin &Beverage) [ (Culberston ) (Jordan) (Nakato)
Num. of data 58 234 139 34 20

W 0.29~2.34 0.08~5.98 0.5~4.46 0.29~2.39 0.25~2.98
Wo/Us 0.28~1.06 0.17-2.79 0.16~0.67 0.17~1.36 0.36~1.58
h/dse 583~4735 107~8388.2 1016~14696 10855~56693 3220~18770
F, 0.24~0.68 0.11~0.58 0.225~0.79 | 0.084~0.196 0.11~0.21
Rex 8.29~33.61 5.9~396.54 6.36~32.67 6.29~94.85 18.6~149
h/B .0017~.042 0.002~0.078 .0014~.066 0.01~0.031 0.017~.078
C; total 130~4236 10~9186 285~6773 13~271 23~242

Cy/Cs % 15% 31% 11% 9.25% 30%

Table 5 Accuracy of methods for different rivers data.
Rio Grande River data (by Nordin).

Number Discrepancy Ratio
Method of data Mean | Standard Percent of Data in Range
sets deviation {0.75~1.25 ] 05~1.5 [0.25~1.75
1. Presented ANN model, Eq. 9 0.998 0.46 41 76 88
2. Engelund and Hansen (1967) 0.96 0.44 37 72 91
3. Ackers and White (dsg) (1973) 0.80 0.48 33 71 84
4. Yang (dsp) (1973) 58 0.57 0.25 26 66 88
5. Brownlie (1981) 0.88 0.48 31 69 85
6. Shen and Hung (1972) 0.74 0.41 31 62 86
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Rio Grande River data (by Nordin and Beverage).

1. Presented ANN model, Eq. 9 234 1.55 6.0 31 67 84
2. Engelund and Hansen (1967) 234 2.9 8.3 31 39 54
3. Ackers and White (dsp) (1973) 233 0.96 0.8 33 62 82
4. Yang (dse) (1973) 233 1.37 1.40 35 56 77
S. Brownlie (1981) 234 1.53 1.15 35 64 84
6. Shen and Hung (1972) 234 1.21 0.91 36 62 79
Rio Grande River data (by Culberston and Dawdy).
1. Presented ANN model, Eq. 9 093 0.43 45 76 92
2. Engelund and Hansen (1967) 0.95 043 46 75 93
3. Ackers and White (ds) (1973) 1.37 0.74 32 57 75
4. Yang (dso) (1973) 0.62 0.28 24 68 93
5. Brownlie (1981) 139 1.21 0.56 37 67 84
6. Shen and Hung (1972) 0.95 0.44 45 77 93
Sacramento River data (by Nakato).
1. Presented ANN model, Eq. 9 1.01 043 40 85 95
2. Engelund and Hansen (1967) 248 2.01 10 30 40
3. Ackers and White (dsp) (1973) 1.0 0.76 35 55 75
4. Yang (dso) (1973) 20 1.08 0.75 45 75 80
S. Brownlie (1981) 1.62 1.31 35 70 75
6. Shen and Hung (1972) 1.23 1.46 40 55 70
Mississppi River data (by Jordan).
I. Presented ANN model, Eq. 9 0.98 0.33 53 88 100
2. Engelund and Hansen (1967) 1.68 0.90 35 44 59
3. Ackers and White (dsp) (1973) 1.09 0.70 35 50 82
4. Yang (dsg) (1973) 0.75 0.50 35 50 88
5. Brownlie (1981) 34 1.40 0.59 29 56 68
6. Shen and Hung (1972) 0.59 0.43 15 53 76
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