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Numerical models based on flux-difference splitting (FDS) technique are developed for simulating

rapidly varied flows in two-dimensional space co-ordinates. A first-order accurate model using Roe’s

numerical flux and a second-order accurate scheme using Lax-Wendroff numerical flux are constructed.

Roe’s averaging for velocity and celerity ensures conservation and consistency while entropy satisfying

solution is guaranteed by theoretically sound treatment. Flux limiters used in second-order accurate model

yields oscillation-free results while maintaining high shock-resolution. The models’ validity and

applicability are demonstrated by comparing computed results with analytical and experimental results for

some exacting hydraulic problems.
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1. INTRODUCTION

Rapidly varied flows test the limits of
numerical models’ applicability because maintaining
conservation across a discontinuity and handling
differing features of signal propagation in regions of
sub- and supercritical flows are requirements that
most conventional models fail to fulfil. Schemes
such as MacCormack™?, although conservative, treat
the problem in a lump-sum way and thus cannot
work well where such detail as direction of signal
propagation becomes a dominant feature. On the
other hand, schemes such as Gabutti”, although
correctly handle signal propagation, are non-
conservative. It has been demonstrated in case of
Beam and Warming scheme®, that handles signal
propagation through automatic switching of
difference operators, that ensuring conservation
does yield significant enhancement in accuracy.

Lately, several shock-capturing schemes
have been found to give very accurate results with
rather ease™®. These schemes essentially apply
upwind differencing to a linearized Riemann
problem’. While that takes care of directionality of
signal propagation, the approximate Jacobian
developed by Roe” enables conservative splitting of

flux differences. The second-order accurate versions
of this class of schemes suitably limit* contribution
of higher-order terms for oscillation-free results.
Although the rigorous theoretical development for
FDS schemes have been confined to 1-D flows,
their logical extensions for solving 2-D problems
recently appearing in the literatures”'®'” show
significant promise for further development. Mostly,
these schemes use finite-volume methods and rely
on MUSCL technique for higher order of accuracy.
This paper follows FDS technique for
developing 2-D models. Both first- and second-
order accurate schemes on the basis of Roe and Lax-
Wendroff numerical fluxes, respectively, are
presented and their relative merits in simulating
rapidly varied 2-D flows are examined. Roe’s”
conservative and consistent averaging for velocity
and celerity is supported by Harten and Hymen’s'”
treatment that avoids unphysical solutions. The
enhanced shock-resolution by the second-order
scheme is kept free from any dispersion error by
limiting the second-order flux through suitable flux
limiters. The validity and applicability of the models
are demonstrated by comparing numerical results
with experimental and analytical solutions. Results
for some test problem are also compared with
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previously reported solutions by other schemes.

2. GOVERNING EQUATIONS
The governing equations for two-
dimensional free-surface flows can be written as
Y + ok + or +S=0 (N
ot ox oy

Where U is the vector of unknowns, E and F are
components of flux vectors and S is the vector
containing source and sink terms. These vectors are
given by

U=(h uh vh) (2a)
E= (uh u’h +0.5gh’ uvh)T (2b)
F = (Vh uvh v’h+0.5gh’ )T (2¢)

$=(0 -gh(S, -S,) -gh(s,, -Sy)) @d)

where h = flow depth, u = flow velocity along x-
direction, v = flow velocity along y-direction, g =
acceleration due to gravity, S, and S, are bed and
energy slopes, respectively. Once the technique for
solving homogeneous part of Eq.(1) is established,
the source term S can be incorporated separately
without affecting the overall formulation. Therefore,
the source term is dropped from the following
considerations for the development of numerical
technique.

In order to effectively and justifiably apply
the Riemann solver and flux difference splitting
technique developed for 1-D problem to the 2-D
problem defined by Eq.(1), help is sought from the
operator splitting technique'”. That in effect means
that instead of solving Eq.(1), we solve the
following two equations successively.

U, E_ (3a)
ot ox
AL (3b)
ot oy

These equations can now be viewed as two one-
dimensional problems. Therefore, the techniques
developed for 1-D problems can be directly applied
to the above pair of equations. The equivalence of
Eq.(1) and (3) is approximate, not exact. The
solution of Eq.(3a) is described in the following.

The flux vector E is related to U through it’s
Jacobian A as

oK 0 1 0
A=—=[c*-u’ 2u 0 4)
ou
—uv A\ u

Where ¢ is celerity defined as c¢=(gh)". The
hyperbolic nature of the governing equations means
that the Jacobian A has a complete set of
independent and real eigenvectors expressed as

1 0 1
(e1 e’ e3)= u+c 0 u-c (5)
vV ¢ v

The corresponding eigenvalues are

M=u+c; APP=u; A =u-c (6abc)

Roe” constructed an approximate Jacobian
by using average values for velocity and celerity.
The details of these averages in case of 1-D shallow
water equation may be referred to Jha et al®.
Following similar search, the average velocities and
celerity can be obtained as

ﬁz(uR\/E+uL\/E:)/(hR +h,)  (7a)
Vz(VR\/B—I:+VL\/E)/(hR+hL) (7b)
¢ =,/0.5g(h; +h,) (7¢)

wherein the subscripts R and L refer to the right and
left states (i.e. for i+1/2,j the left state is i,j and the
right state is i+1,j).

3. FIRST-ORDER SCHEME

The first-order scheme for Eq.(3a) can be
written as

t+l t t
Uh) —.‘Ul,_] ’y ﬂzl,] (8)
where i,j = space indices along x- and y-directions; t
= time index; y = At/Ax; At, Ax = time and space

increments,. The flux difference AE is written in
split form as

AE=iak</1++/l')kek ©)
k=1

where k = wave number and o = wave strength
expressed as

o =0.5Ah +0.5(AUh)-TANT  (10)
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o =(AWh)-FANWE (11)

o« =Ah-d (12)

The splitting of flux-difference allows introduction
of upwinding into the scheme. Insertion of Eq.(9)
into Eq.8) and subsequent mathematical
manipulation yields the following first-order upwind
finite-difference scheme

U =U BN, -ENy,) (13)

where the numerical flux EN is expressed as
3
EN = 0.5(E; +E,)-0.5) a“m T 14
k=1

The average velocities and celerity given by Eq.(7)
are conservative and consistent with the governing
equation. However, it converges to an unphysical
solution by violating entropy inequality condition in
case of rarefaction waves (dam-break case, for
example). The problem can be overcome by
replacing the modulus of A in Eq.(14) by a suitable
function of Aand a small quantity 6 whenever
modulus of A is less than §'”. We avoid the trial
procedure for finding value of & and use the
following expression instead'?.

8¢ = max(0, 4, - AU ) AU - 4)) (15

Ag = 2'(UL>UR) (16)

4. SECOND-ORDER SCHEME

The second-order accurate scheme is
obtained by using Lax-Wendroff numerical flux in
Eq.(13). Using the approximate Jacobian of Roe”,
the Lax-Wendroff numerical flux can be written as

EYW) = 0.5(E, +E, )- o.sia“ 7| &
k=1

+ O.Si ¢ o1 (i- ﬂ"])s“ a7
k=l

where ¢ is the flux limiter designed to prevent
oscillations due second order of accuracy. The flux
limiter is a non-linear function of

(18)

We use Van Albada limiter® which is expressed as

k | x k )
Lip,y = (ann/z-sxgn(i,"w“),/a1+1/2,1

o=@ +1)(1+1?) (19)

Eqgs.(15) and (16) are implemented for satisfying
entropy inequality condition just as in the case of
first-order scheme.

5. NUMERICAL STABILITY

The schemes presented herein are explicit
and, therefore, require strict observance of stability
criteria for successful execution. The following has
been found to give stable results.

min(Ax, Ay)
' max(c +yut +v° )

where C,=the Courant number

At<C

(20)

6. NUMERICAL RESULTS

The models are first verified against
Stoker solution'® for 1-D dam-break problem.

The dam-break problem is considered in a
(200m x 200m) horizontal and frictionless area
(Fig.1) which is divided into Sm x Sm cells, 40
along each direction. The dam is placed parallel to
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(100,170)

PARTIAL BREACH SIZE

(100,95)
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Fig.1 Definition Sketch for Dam-Break Problem

y-direction at 100m from either end of the flood that
separates reservoir and flood-plain. The initial water
depths in reservoir, h, and flood-plain, h,are 10m
and 5m, respectively. The whole dam is taken off at
the initiation of computation that simulates total
collapse of the dam, for which 1-D analytical
solution is applicable. The computed results at time
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Fig.2 Comparison with Analytical Solution for the Case of
Total Dam Collapse

7+At seconds is compared against analytical
solution in Fig.2. Both first and second-order
models are found to compare excellently with
analytical solution. The negative wave as well as the
positive wave front are correctly captured by the
models and, as expected, the higher-order of
accuracy results in slightly better shock-resolution.
It can also be seen that there is no trace of any
entropy violation due to the remedial treatment.

The models are next verified against
experimental data of a hydraulic jump from
experiments conducted by Gharangik' in a 13.9m
long and 0.45 m wide straight, horizontal,
rectangular channel. The Manning’s n for
experimental conditions were reported between
0.008 and 0.011. The constant discharge was 0.053
m’/s. The upstream flow depth was 0.064m
(velocity =1.82 m/s,Fr=2.3) and the conjugate depth
was 0.17m (velocity=0.69m/s, Fr=0.53). The grid
size for this problem is 0.05m x 0.05m. At the
upstream end, both depth and velocity is specified
and at the downstream end, a hypothetical rating
curve is specified with a point corresponding to
downstream measured conditions. We obtained
good results with Manning’s value equal to 0.008.
The steady state results are compared with
experimental data in Fig.3. The location of jump at
about 1.6 m agrees well with the experimental data
and so does the jump height. It may be noted,
however, that the experimental jump profile is
slightly diffused when compared with sharply
resolved discontinuity in the numerical results.

Having verified the models, we apply
them to 2-D dam-break problems. The layout is
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Fig.3 Hydraulic Jump in Rectangular Channel
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Fig.4 Water Surface Profile 7 sec. After Partial Dam-Break
Computed by First-Order Scheme (h/h,=10/5).

Fig.5 Water Surface Profile 7 sec. After Partial Dam-Break
Computed by Second-Order Scheme (h,/h,=10/5).
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taken from Fennema'® for which results computed
by other approaches been previously
reported”'"'¥, The problem is schematically shown
in Fig.l with the partial breach section. The
simulated results are shown in Figs.4 and 5. The
first-order model yields remarkably good results but
the shock —resolution is less sharp than that given by
second-order accurate scheme. The flow depth
contours corresponding to Figs.4 and 5 are shown in
Figs.6 and 7. These results compare very well with
previously reported results™'>'%.

have

Fig.6 Water Depth Contour 7 sec. After Partial Dam-Break
By First-Order Scheme (for Fig.4)

Fig.7 Water Depth Contour 7 sec. After Partial Dam-Break
By Second-Order Scheme (for Fig.5)

Fig.8 Water Surface Profile 7 sec. After Partial Dam-Break
Computed by Second-Order Scheme (h,/h=10/.05).
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In order to demonstrate the models
capability to simulate one of the severest problem,
the water depth, h, in the flood-plain is reduced to
0.05m. The water surface profile at 7+At seconds
computed by second-order scheme is shown in
Fig.8.The figure indicates that the bore travels much
faster than when the flood-plain had larger water
depth. However, the bore height is lower and less
pronounced in this case. Fig.9 shows the
corresponding velocity vector plot. It clearly shows
that the velocity in the main flow direction is much
larger than that in the transverse direction. Therefore,
the flood-wave spreads comparatively slowly in the
direction perpendicular to the main flow. Comparing
Fig.9 with the velocity vector plot of Fig.10,
corresponding to Fig5, it is clear that this
phenomenon becomes stronger as the difference
between reservoir and flood-plain depths increases.

It may be noted that a free-slip boundary
condition has been implemented at side walls, which
means that there is no side wall friction

7. CONCLUSIONS

A First-order FDS scheme based on Roe’s
numerical flux and a second-order FDS scheme
based on Lax-Wendroff numerical flux are
developed for simulating rapidly varied two-
dimensional flows. These schemes incorporate
Roe’s approximate Jacobian for conservative
properties and consistency with the governing
equations. The inclusion of Harten and Hymens
treatment ensures models’ compliance with entropy
inequality requirements. The models are applied to
severe dam-break and hydraulic jump problems. The
comparison of numerical results with analytical and
experimental results indicates that the models
presented in this paper yield accurate results. The
shocks are resolved, particularly by the second-order
scheme, mostly within one spatial grid. The mass
balance was tracked in all cases and the error was
always within one percent. It is concluded that these
models can be used confidently to simulate 2-D
rapidly varied flows.
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