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A method to compute turbulent bottom shear stress from free stream velocity variation under
irregular waves has been proposed for plane bed condition. The correlation has been assessed through
spectral analysis of free stream velocity and bottom shear stress obtained from generated irregular
waves and from k-€ model result respectively. A significant improvement in the prediction has been
achieved compared to that proposed by the authors earlier. Turbulent friction factor and phase
difference obtained through spectral analysis corresponds quite well to those from experimental data
for sinusoidal waves and with corresponding available smooth turbulent friction factor descriptions.
Proposed method presents a high degree of accuracy and is very convenient to use from the viewpoint

of practical application.
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1. INTORDUCTION

Waves propagating into water of finite depth
manifest the influence of sea bottom through the
establishment of a boundary layer in the immediate
vicinity of the bottom. Flow in this layer is strongly
shared through turbulent dissipation and governs the
flow dynamics. Although many studies have been
reported on regular sinusoidal and short crested wave
boundary layers, consideration of irregular wave to
investigate bottom boundary layer properties is
relatively recent.

Several researchers have studied irregular wave
bottom friction considering spectral wave dissipation
and from statistical consideration”. Samad and
Tanaka®? had studied the time varying character of
bottom boundary layer for both laminar and turbulent
cases. It has been reported that for laminar flow, high
flow inertia causes a double peaked shape in bottom
shear stress, while for turbulent motion, turbulent
mixing reduces flow inertial effects, therefore,
bottom shear stress becomes almost instantaneous
with free stream velocity variation.

To estimate time variation of bottom shear stress
Hasselmann and Collins”, and Kabling and Sato”
have suggested a relationship based on the definition
of wave friction factor. Applicability of such a
relationship to irregular waves was studied by Samad

et al.® along with the comparison of k-£ model
results. Though their result proved encouraging,
several modifications seemed essential; specially
concerning the assessment of friction factor and
the inclusion of phase difference between free
stream velocity and bottom shear stress.

In the present paper a detailed spectral analysis
has been made to evaluate correlation characters
between free stream velocity and turbulent plane
bed bottom shear stress computed through k-¢
model. The analysis has resulted in a systematic
improvement in the estimation and accordingly the
earlier proposed method has been modified. When
applied along with average turbulent phase
difference, the modified method could predict
turbulent bottom shear stress from free stream
velocity with significant accuracy. It has also been
observed that the turbulent irregular wave friction
factor corresponds quite well to those from
sinusoidal waves.

2. GOVERNING EQUATIONS
METHODOLOGY

AND

(1) Irregular Wave

The spectral density for irregular water surface
elevation has been computed using Bretschneider-
Mitsuyasu spectral density formulation. Applying
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small amplitude wave theory, free stream velocity
transfer function has been computed which is later
applied to obtain free stream velocity spectrum. To
generate free stream velocity time variation,
consideration has been made that irregular waves can
be resolved as a sum of infinite number of wavelets
with small amplitudes and random phases. Details of
irregular wave generation can be found in Ref.3).

(2) k- Model

Generated irregular wave free stream velocity
time variation has been used for turbulence
computation in the boundary layer applying Jones
and Launder” original low Reynolds number k-&
model. A full description of the modeling system can
be found in Sana and Tanaka®.

(3) Non-Dimensional Parameters
Reynolds Number : The wave Reynolds number
for sinusoidal waves (Re) as given by Jonsson” is:
2
=Yt o )
Y Vo
where U, is free stream velocity amplitude, a,,
maximum bottom orbital displacement, ©® wave

frequency and v is kinematic viscosity.

Re

Irregular wave Reynolds number has been
defined in terms of significant wave properties and
has been made analogous to Re, given by:

U
Re,, = B @)
V@,
with
Uy = s . ! and @, = E’L 3)
T,, sinh 2mh/ L T,

where U, H,;5, T} and @,; are significant quantities
of free stream velocity, wave height, wave period and
wave frequency respectively, h water depth and L is
wave length corresponding to ®,;.

3. COMPUTATION RESULT
SPECTRUM ANALYSIS

AND

(1) Input Parameters

The input wave parameters specified for
computation have been the significant wave height
and period, water depth, and a normalizing depth, z,,
where the flow is same with the free stream velocity.
Four turbulent cases have been considered here and
the parameters are presented in Table 1.

(2) Spectral properties of Turbulent Bottom
Shear Stress and Free Stream Velocity
Considering the definition of bottom shear ‘stress

Table 1: Parameters for turbulent irregular wave computation.

h |z | Ts| H U,
Run cm | cm s:c 011r/13 cmfs Res
Casel 430 | 184.0 | 5.39x10°
Case2 § S | o | 480 | 2053 | 6.71x10°
Case3 | — | — 505 | 216.1 | 7.43x10°
Case4 530 | 226.7 | 8.18x10°

several researchers”™ have suggested a generalized
relation to compute the instantaneous bottom shear
stress in the from:

n-1

< U(D|U(1) 4

where, 7,(t) and U(z) are instantaneous bottom
shear stress and free stream velocity respectively, p
water density and #n is a correlating exponent. In
Eq.(4) generally the constant of proportionality and
the exponent can be replaced introducing the wave
friction factor.

In this study, in order to achieve maximum
correlation, cross-spectrum and coherence have
been studied from k-€ model computed bottom
shear stress and free stream velocity for different
values of ‘n’. Fig.1 shows the spectral density for
n=1.68 (or UIUI’®) for Casel. Corresponding
coherence and phase difference between bottom
shear stress and free stream velocity is presented in
Fig.2. Average coherence and phase difference
then have been computed between frequency
range corresponding to 99% of velocity spectrum
(as indicated in Fig.1) and plotted against the
exponent values as shown in Figs3 and 4
respectively. Fig.3 shows that the average
coherence achieved a maximum value when
n=1.68, which means that maximum correlation
between 7, and U can be achieved using 1.68 as the
exponent. The average phase difference shows very
small variation except for Casel (Fig4) and at
n=1.68 it has been found to be 0.16 rad (=9.2 deg.).

4. PREDICTION METHODS

Following Hasselmann and Collins” the
instantaneous bottom shear stress can be evaluated
from Eq.(4) along with wave friction factor as:

ROESIRICIOT 5)

The turbulent friction factor, f,, can be computed
following Fredsge and Deigaard'® expression for
sinusoidal wave which is given by:

f,, =0035Re™" (6)
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Fig.1: Spectral density of UIUI%, Case 1.

where Re can be considered as the Reynolds number
(RE) corresponding to instantaneous free stream
velocity such that:
2
re=Y®" 7
wv
Substituting Eq.(7) in Eq.(6) and replacing f,, in
Eq.(5) one can get:
068

To(0) = %0.035(a)v)°""’U(t)lU(t)| .®

Eq.(8) has already been presented by Samad et al.®. It
is interesting to note that the exponent obtained
through spectral analysis matches exactly with that
from the equation proposed by Hasslemann and
Collins if the turbulent friction factor is assessed
through Fredsge and Deigaard formulation.

A further assessment of the coefficient in Eq.(8)
can be made by defining a transfer function between
bottom shear stress and free stream velocity such as:

H,(f) =§ A (ov)** ©9)

where A is a coefficient that can be obtained from the
comparison of corresponding transfer function from
k-£ model result. The later is defined as:

Ho (=Y

S ia(f)
with S(f) and S,/®(f) are being shear stress and
velocity spectral densities respectively. From Eq.(9)
and Eq.(10) the coefficient has been evaluated as
A=0.041. The comparison is presented in Fig.5 along
with different methods to evaluate @ which are
elaborated later. The transfer function so defined
resulted in a friction factor relation of:

f., =0041Re™".

(10

(11)

Obtained friction factor formulation (Eq.11) and
phase difference has been compared with those from
sinusoidal waves in Figs.6 and 7 along with several

T T T T —[ T
| S B S
i Coherence !
- n=1.68 E
L n=1.00 i
d:; — — n=2.00
< Case 1 Phase ]
=05+~ m—— n=1 68 ]
8 ------- n=1 00
N —-— n=2.00 7
| - N
0 i 1 e aadee]., L
5 6 7 8 910! 2
f (Hz)

Fig.2: Coherence and Phase for Case 1.
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Fig.3: Average coherence as a function of n.

experimental data and smooth turbulent friction
factor expressions by Jonsson”, Kajiura'”, Tanaka
and Thu'?, and Fredsge and Deigaard. Considering
the exponent and coefficient of Re from spectral
analysis, Fig.6 suggests that irregular wave friction
factors and phases are in very good agreement with
those from sinusoidal waves. Although lack of
experimental data in the range of high Reynolds
numbers restricts any detailed comparison, Eq.(11)
shows a very good agreement with computed
results. Similarly the average phase difference (y)
obtained through spectral analysis also corresponds
well with that from sinusoidal wave (Fig.7) for the
range of Reynolds number considered.

Therefore, an alternative to Eq.(8) to compute
irregular wave instantaneous bottom shear stress
could be proposed as:

(-4 = §<).041(aw)°~16 U@ )

()

0.68

(12)

The use of Eq.(12) poses difficulty in selecting
a representative wave period. In this respect two
options could be of interest, firstly to consider
period for individual waves and secondly to apply
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Fig.S: Comparison of bottom shear stress transfer function,

Method 2 and 3, Case 1.
the significant wave period.

As such, three possible methods to compute
instantaneous bottom shear stress could be identified.
These are:
® Eq.(5) with f, computed from Eq.(11) for

individual waves (Method1),
® Eq.(12) considering individual wave periods

(Method?2) and
® Fq.(12) with significant wave period (Method3).
Method3 presents the most easy to use formula from
practical application viewpoint.

(1) Accuracy of Prediction

Bottom shear stress obtained through proposed
methods are compared with k-£ model results.
Although k-£ models have mainly been proposed for
unidirectional flows and its use in oscillatory flows is
relatively recent, the results obtained by different
researchers'®®'? suggest its suitability.

Figure 5 shows comparison of proposed transfer
functions for Casel. The agreement between
proposed methods and that from k-€ model are
generally good and shows a better agreement with
Method3.
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Comparison of bottom shear stress time series
for all the methods are shown in Figs. 8 and 9.
Accuracy comparisons for Method2 and Method3
are also presented in Figs. 10 and 11.

The quantitative accuracy of proposed methods
has also been assessed through the following
accuracy factor.

F, == (13)
TOk —€

The standard deviation has been defined as:

1 ¥ 2
= j—— F —F
- \/N_lg( _F)

(14)
with

LSk 15
Fa N 21 “ ()
where T,n, and 7, . are proposed and k-& model
computed bottom shear stresses respectively, F,,
mean accuracy factor, N total number of data and i
is index subscript. During flow reversal bottom
shear stress become very small and, as such, use of
Eq.(13) could result in unrealistically small or large
values for F,. Therefore, bottom shear stresses with
values less than 10% of the significant bottom
shear stress has not been considered for accuracy
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factor computation. Table 2 shows a summary of
accuracy analysis for both instantaneous (7y(z)) as
well as maximum (7.) bottom shear stresses in a wave
cycle. For all the cases, on average, a total of about
9000 data pairs have been considered with a time step
of 0.1sec. covering about 140 wave cycles. It shows
that both Method2 and Method3 have high predictive
ability with about 65% 7,(t) lying in £10% of the
accuracy range. For 7, it is over 80%. It can be seen
that Method3 is not only easy to use for practical
purposes but also the most accurate.

5 CONCLUSIONS

A detailed spectral analysis has been made on
irregular wave k-€£ model results for turbulent bottom
shear stress and free stream velocity for plane bed

condition. Following the definition of wave friction
factor three methods for the determination of
instantaneous bottom shear stress could be
identified based on the spectral analysis.

Obtained exponent and coefficient values in
Eq.(4) for turbulent cases provide description for
irregular wave friction factor which corresponds
very well with those obtained from sinusoidal
waves. The average phase difference also falls in
the same range of corresponding sinusoidal wave.

Based on spectrum analysis modifications has
been made to the prediction method for turbulent
instantaneous bottom shear stress that was
proposed earlier by the authors. Generally much
improved prediction has been achieved. Among the
three methods proposed Method3 shows the best
agreement when compared with k-€ model result.
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Table 2 :

Accuracy of predicted bottom shear stress : % of data in the accuracy range of £10% and +20% and Standard Deviation.

Method 1 Method 2 Method 3

Model Instantaneous Maximum Instantaneous Maximum Instantaneous Maximum

Runs Accuracy Range | Accuracy Range ] Accuracy Range | Accuracy Range | Accuracy Range { Accuracy Range
0.9-]0.8- 0.9-10.8- 0.9-10.8- 0.9-10.8- 0.9-10.8- 0.9-10.8-
1.1 ] 1.2 SD. 1.1 | 1.2 S.D. 1.1 112 S.D. 1.1]12 S.D. 1.1 |12 S.D. 1.1 |12 SD.
Casel (23.0151.5]0.19140.1|71.210.23}64.3|88.2|0.14]76.5{95.5]0.10]66.189.2|0.14|82.6{95.5{0.10
Case2 [25.1152.7]|0.22]140.1|66.9.022]64.9{88.2{0.14{82.2]96.8|0.09])66.8|89.8{0.13{86.7(98.1(0.09
Case3 |21.2]51.5{0.22]29.9|69.5/0.26|62.7|89.1|0.15|76.8|97.4(0.08]67.2|89.9|0.14|86.1|98.0|0.07
Case4 [20.8(50.5]0.24|32.3]|67.710.24163.3|188.4|0.14|81.1{96.8(0.09166.4 {89.6|0.14|86.2|96.90.09
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Fig.10: Accuracy check for predicted bottom shear stress,

Method 2, Case 1.

ACKNOWLEDGEMENT: The authors gratefully
acknowledge the financial support as Grant-in-aid by

(to/p)vz (cm’/s%)

Fig.11: Accuracy check for predicted bottom shear stress,

Method 3, Case 1.

laminarization with a two equation model of turbulence,
Int. J. Heat and Mass Transfer, Vol.15, pp.301-314, 1972.

L . . 8) Sana, A. and Tanaka, H.: The testing of low Reynolds
the Ministry of Education, Science and Culture, number k-& models by DNS data for an oscillatory
Japan for this study. boundary layer, Flow Modeling and Turbulence

Measurement VI, pp.363-370, 1996.
REFERENCES 9) Jonsson, 1.G.: Wave boundary layers and wave friction
1) Mitsunobu, N. and Sato, S.: Representative velocity and factors. Proc. Int. Co’,‘f' Coastal Eng.,pp.127-148, 1966.
shear stress under irregular waves, Proc. 44th Annual 10) Frcc?sqbe, J. and Deigaard, R .Mechamcs of Coastal
Meeting, JSCE, Vol.2, pp.770-771, 1989. (in Jap.) Sec.i.lment Transport, World Scientific, 369p., 1992. .
2)  Samad, M.A. and Tanaka, H.: Fundamental study on laminar 11 Kajiura, K. A model of the bottom boundary layer in
boundary layer characteristics under irregular waves. Proc. water waves. Bull Earthq. Res. Vol.46, pp.75-123, 1968.
Conf. Civil Eng. in the Ocean.Vol.14, pp.113-118, 1998. (in  12) Tanaka, H. and Thu, A.: Full-range equation of friction
Jap.) coefficient and phase difference in a wave-current
3) Samad, M.A. and Tanaka, H.: Oscillatory bottom boundary boundary layer. Coastal Engrg. Vol.22, pp.237-254, 1984.
layer under irregular waves. J. App. Mech. JSCE, Vol.1, 13) Saqa, A.: Experimental and numerical study on turbul'cnt
pp.747-755, 1998. oscillatory ' boundary layer. D. Engrg. Dissertation.
4) Hasselmann, K. and Collins, J.I: Spectral dissipation of Tohoku Univ. 176p., 1997. L
finite-depth gravity waves due to turbulent bottom friction. J. 14) Jen§en, B.LL.. Experimental investigation of turbulent
Marine Res. Vol.26, pp.1-12., 1968. oscillatory bogndary layers, I.nst. Hydrodyn. Hydraul.
5) Kabling, M.B. and Sato, S A numerical model for Eng., Tech. Univ. Denmark, Series Paper 45, 157p.3 1989.
nonlinear waves and beach evolution including swash zone, 15) Sawamoto, M. and Sato, E.: The structure of 0sc111at01jy
Coastal Eng. in Japan, Vol.37, No.1, 1994. turbulent boundary layer over rough bed. Coastal Eng. in
6) Samad, M.A., Tanaka, H., Sumer, B.M., Fredsge, J. and Japan, Vol.34, No.1, pp.1-14, 1991.
Lodahl, C.: A study on irregular wave bottom boundary 16) Justesen, P. and Spalart, PR.: Two-equation turbulence
layer. Proc. Jap. Conf. Coastal Eng..Vol.45, pp.91-96, 1998. modelling of oscillatory boundary layers. Proc. 28th Aero.
(in Jap.) Sc. Meeting, Reno, Nevada, USA, pp.1-9, 1990.
7) Jones, W.P. and Launder, B.E.: The prediction of (Received September 30, 1998)

— 430 —



