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The motions of starting plumes traveling down slopes are investigated by large eddy simulations. The
formulation of the model is based on the filtered two-dimensional Navier-Stokes equations and transport
equation for density excess which is deduced from the conservation of mass. The subgrid-scale turbulent
stress is evaluated by the Smagorinsky model. It is found that the model can give a good description of the
front of inclined plumes over a wide range of slope angle ( 10°= ¢ =90° ), when the following empirical
relationships for the Smagorinsky constant Cs = 0.06 + 0.1 sin 6 and for the subgrid turbulent Schmidt
number Scs = 0.4 - 0.3 sin 0 are used. The computational results further revealed the flow pattern, the
density distribution as well as the mechanism of entrainment at the head of inclined plumes.
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1. INTRODUCTION

When dense fluid is constantly released from
the upstream end of a slope into a less dense
enviromment, the dense fluid will move down along
an incline and spread under the action of its own
buoyancy force (see Fig.1). The motions of this
form are often referred to as inclined plumes. The
discharges of sediment-laden water or dense waste
water into a reservoir or coastal seas are typical
examples of inclined plumes. In order to
understand their impact on environment, it is
important to predict how suspended sediments or
waste matter are dispersed.

A great deal of experimental and analytical
studies on inclined plumes has been performed. For
examples, Britter and Linden" have studied the
flows over the range of slopes 5° = § =< 90°
and found the dimensionless front propagation

speed U= U, /(Byg,)”=15£02 , where
inflow buoyancy force B, = g(po - pa)/ Pa >

and ¢, is inflow rate. In addition,
that the rate of growth of the head height, dH / dx,

it is revealed

Fig.1 Definition sketch of an inclined plume

and the aspect ratio of height to length of the head,
H/L, are proportional to slope angle 0. Further
studies on the inclined plumes over the range of
slopes 5°< 6 = 90° have been performed by
Akiyama et al.?”** and more detailed and accurate
information on the flows has been obtained. A
mathematical model to predict such plume
characteristics as front velocity, head height and
density has been also developed.

In the aspect of the numerical simulations of
inclined plumes, only a few work is reported in
literature. For example, Michioku et al.” used the
k — & model to simulate the flow on a slope of 6
=5.71°, yet only made a few qualitative analyses on
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the flow characteristics of the front of inclined
plumes. To the authors’ best knowledge, the
systematic studies of inclined plumes using
numerical simulations have not been reported in
literature.

Herein the large eddy simulation (LES) is used
to predict the flows. It is known that the large range
scales exist in turbulent flows and the various
scales make different contributions to the
correlation terms. In addition, large scales can not
be always considered as isotropic. These lead the
large-scale-averaging approach for turbulent
simulation is not always satisfactory. The direct
numerical simulations (DNS), in which the whole
range scales are computed by using very fine mesh,
require considerable computation time and
computer memory. The large eddy simulation is a
promising approach to overcome these difficulties.
In the large eddy simulation only the effect of small
scales is modeled, while the large scales are
directly computed. Since small scales tend to be
more isotropic than the large ones, the modeling
of them should be simpler and more universal than
the large-scale-averaging approach.

Since Deardorff” had made his pioneer
contribution in 1970, LES has been developed
further by Yoshizawa ¥ Germano et al.” , Moin
and Kim'” , Piomelli et al.'” , Horiuti'? |,
Schumann'” and other researchers. Many
encouraging results have been obtained and it has
been shown that LES using simple models, such as
the Smagorinsky model, can yield good predictions
for various types of turbulent flows, including open
channel flows, thermal convection, multiphase
flows and so on.

In this study, the Smagorinsky model is
employed to simulate inclined plumes. The detailed
comparisons between computational and experi-
mental results are made.

2. MODEL FORMULATION

In large eddy simulation, the large-scale
quantities [/'(7,f) (i.e. average values in local
space) are defined by convolution of the physical
variates f(7,t) with a filter function G(7,7'),
where 7 is coordinate in space.

F(F,t)'-:-[ G(F, 7" )f(F' t)dr’ (D)
By applying the grid filter to the two-
dimensional incompressible Navier-Stokes

equations and mass transport equation, ignoring
Leonard and Cross terms, we can obtain the
following governing equations.

aU,
55 =0 @
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where U/, is the large-scale quantities of velocity
component in the direction x;; P is the large-

scale pressure minus the hydrostatic pressure at
reference density p,; p is large-scale density ;

Ap is density excess, i.e. Ap=p-p, ; g isthe
specific body force in the direction x,; u/, Ap'

are fluctuating velocity and density excess. u; ] -

are correlation terms between fluctuating velocity
due to space averaging. By using eddy viscosity
concept, the correlation terms take the form

— o U, 2

—uul = v,| —+—=\-=ké,; (5
ox;, 0Jx,) 3

where v, is the subgrid scale eddy viscosity ; k is

the turbulent kinetic energy ; 5,.1. is the Kronecker

delta function. The last term in Eq. (5) represents
the normal stresses and can be absorbed in the
pressure terms of the momentumn equations.

In the Smagorinsky model, the eddy viscosity
v, is obtained by assuming that turbulent energy
production and dissipation of subgrid scale eddies
are in balance. This leads following expression,

v, = (Csh)’ (6)

where A is the filter width, (E’ = (25'— S )1/2 is

iy

Lg

the magnitude of large scale strain rate tensor

_ - oU,
Siy = H (7)
2\0x; Ox,

and C’ is the Smagorinsky constant. Many previous
studies'” have shown the Smagorinsky constant
needs some adjustments from flow to flow and the
values vary from 0.07 to 0.27 for various flows.
For examples, Lilly' used Cs=0.23 for homo-
geneous isotropic turbulence; Deardorff” used
Cs=0.1 for turbulent channel flow; Piomelli et al.'?
found the optimum value of C's to be around 0.1.

-u/Ap" is generally assumed to be

v, dAp
“ubp Scs ox,

®)
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Tab.1 Computational conditions
6° |Bo(cm/s®)| qo (cm¥s)| Ly (cm) | Ly (cm)
10 9.80 3.34 350 50
20 9.80 2.16 250 60
30 9.80 2.16 250 80
45 9.80 2.02 250 80
60 9.80 2.02 250 100
70 9.80 2.02 250 110
80 9.80 2.00 250 120
90 9.80 2.00 250 120

* Lx and Ly are the length and height of computational
domain

where Scs is the subgrid turbulent Schmidt number
and is defined as the ratio of eddy diffusivity of
momentum to eddy diffusivity of matter. To the
authors’ best knowledge, so far the universal
expression on the values of Scs has not been
available. According to the studies by Reynolds'®,
it can be assumed that turbulent Schmidt number
bears perfect analogy with turbulent Prandt!
number, the ratio of eddy diffusivity of momentum
to eddy diffusivity of heat. Concerning subgrid
turbulent Prandtl number Prs, Eidson'” has
indicated that it has different physical significance
and does not equal to the value obtained for long-
time-averaged turbulence. The studies by Eidson'”,
Grotzbach'® and Deardorff'” suggest a range of

Prs=1/2~1/3.

3. NUMERICAL SCHEME AND
COMPUTATIONAL CONDITIONS

An operator-split algorithm is used to solve
the governing equations. Diffusion terms in Eqgs.
(3) and (4) are discretized by central difference
scheme. Advection terms are solved by the two-
dimensional Hermitian interpolated pseudo-particle
method, which has been found to be less diffusive
and nearly free from numerical oscillation for the
advection-diffusion problems'”?®. The pressure is
obtained by solving the Poisson type equation
which is deduced from the algebraic manipulation
of Eqgs. (2) and (3).

The computational conditions are partially
summarized in Tab.1. The computational region is
a rectangle and the size is dependent on the slope
angle 0, as shown in Tab.1. To verify the model,
a wide range of slope angle 8 is considered in the
computation. Except inlet at upstream end and
outlet at downstream end, other boundaries are
considered as solid boundaries and no-slip
boundary conditions are imposed. Grid size is lem
X lem. The time interval ranges from 0.001 s to
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0.1 s depending on the slope angle 6 and the
inflow buoyancy flux .

4. THE COMPUTATIONAL RESULTS

In trial computations, it is found that the
computational results are strongly dependent on the
choice of the Smagorinsky constant Cs and the
subgrid turbulent Schmidt number Scs. By the
comparisons of main flow characteristics such as

: dH/dx and H/L between the

Uy,
computational results and experimental data
obtained by Akiyama et al.” in the range of 10°=

6 =90°, we found the optimum value of Cs is a
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function of 6 and can be expressed as
Cs=0.06+0.1 sin ¢ ©)
Cs ranges from 0.077 to 0.16 for 10°< 6§ =90°.
Note that Cs ranges from 0.07 to 0.27 for various
flows in previous studies'”. Similarly, the optimum
values of Sc¢s can be expressed as
Ses=0.4-0.3 sin ¢ (10)
Note that in the cases of small slopes, the value of
Scs given by Eq.(10) is within the range suggested
in previous studies (see § 2).
The computed U; , dH/dx and H/ L

by using the optimum values of Cs and Scs are
compared with the experimental data in Figs. 2, 3
and 4, respectively. It is observed that the computa-
tional results can give good descriptions for all
these flow characteristics of the front of inclined
plumes. It should be noted that in the experiment
the geometry of the front is rather difficult to be
defined at 6 =90°. This may cause some
difference between computational results and
experimental results observed in Figs.3 and 4.

In what follows, using the values of Cs and Scs
estimated by Eqs.(9) and (10), the more detailed
comparisons are made between experimental
results and computational results.

(1) The comparisons between experimental and
computational images
Fig.5 shows the experimental and the
computational images of the flow on the slope 0
=20°. In the figure the front is traveling from right
to left. The region of plume in computational

results is defined by Ap/ p, 2107, 1t is seen

that both are basically in agreement in shape, size
and front velocity. In the experiment, it is observed
that the flow at the wake of the head is quite
unstable and part of dense clouds is left behind in
the cases of small slope angle (6 =20° ). This
phenomenon does not appear in the computation
and it leads some difference between the
experimental and the computational images.
Because the density excess of left part is relatively
small, it does not affect the motion of the front
much. As the slope increases, the phenomenon also
disappears in the experiment, and the experimental
and the computational images seem to trend
towards more consistent.

(2) Flow and density excess patterns

Fig. 6 shows computed typical flow and density
excess patterns of the front for 8 =10°, 45° and
80° at time=16 s. It is found that the head basically
keep the shape of half-ellipse as described by

0.4 (m) 0.2 00

0.4 (m) 0.2 0.0
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Fig.5 The experimental and the computational images for the
front of 0=20° , Bo=9.8 cr/s®, ¢, =2.16 cm™s. (a), (¢)
and ( e ) are photographs from experiment. (b), (d) and (f) are
computational images corresponding to (a), (c) and (e),
respectively.

previous experimental studies’®, and becomes

larger as the slope increases. The flow pattern of
the front is characterized by a large vortex motion
centered near the top of the front. The vortex
motion is weaker in the case of small slope and
becomes stronger as the slope increases. By
comparing these figures, we can find that the
entrainment of ambient fluid at the rear of the front
is weaker in the case of small slope angle and
becomes stronger as the slope angle increases. This
is a main reason why the head becomes larger as
the slope increases.
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Fig.6 Velocity ficlds and density excess fields
(Bo=9.8 c/s?, q, =2.0 em?/s )

Also there is some difference between the
density excess fields for small slopes and for large
slopes. In the cases of large slope such as 0= 45°
and 80°, a peak of density excess appears at the
place little lower than the center of the vortex
motion, due to the stronger entrainment of fluid
with less density from the rear of the front. For the
case of 0 = 10°, the maximum of density excess
always appears near the bottom.

(3) The constancy of U,, dH /dx and H/ L

For one case of 6 =45°, the computed values
of front propagation speed U , , height of head H,

and the aspect ratio of height to length H/L at
different distance are examined in Figs.7, 8 and 9,
in which the experimental data obtained by
Akiyama, et al” are also included. In these
figures, x, is the distance from inlet to the front

position. We found that the experimental results
fluctuate much stronger than the  computational
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results, but averagely both are in good agreement.
These figures also show that the values of U,

and H/L nearly keep constant after a certain
distance, and A increases linearly as the

head moves forward. This also means that U;

and dH /dx are nearly constant at different
distance. It has been found these conclusions are
still correct for the flows at other slope angle.
However, it should be noted that there is some
difference between the flow on large slope and
small slope. The head for small slope such as 6
=10° has a small acceleration than that for large
slope, due to weak gravitational force in forward
direction, so that it moves slower within a certain
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of inflow buoyancy flux B, ¢, (0=45°

distance and needs a longer distance to reach a
stable velocity.

(4) The effect of inflow buoyancy flux
The effect of inflow buoyancy flux Byg, on

inclined plumes was examined experimentally by
Britter & Linden" and Akiyama et al. over a range
of 2.5 ecm’/s’ < B,q, <250 cm’/s’. 1t is revealed

that U,, dH/dx and H/L
independent of B,q, . For one case of 8 = 45°,
the computed U, dH/dx and H/L by using

the optimum values of Cs and Scs estimated by
Eqs.(9) and (10), are plotted against Byq, in
Fig.10 and no evident trend is found over a wide
range of 4.95 cm’/s’ < B,g, <1.08X 10° cm’/s’.

The constancy of U;, dH/dx and H/L

against Byq, is also observed at other slope
angles.

are almost

5.  CONCLUSION AND DISCUSSION

The detailed comparisons between the
computational results and the experimental data
have shown that the model can give a good
description for the front of inclined plumes over a
wide range of slope (10°< 6 =90°) and regardless
of inflow buoyancy flux, when the Cs and Scs are
calculated by the following empirical formulas
Cs =0.06 + 0.1 sin 6 and Scs = 0.4 - 0.3 sin 6.
The computational results further revealed the
mechanism of the internal flow and density
distribution as well as entrainment at the head of
inclined plumes.

As a means of comparison, we have used
the one-equation model'? to simulate the flow. In
the one-equation model, the subgrid scale eddy
viscosity v, is a function of turbulent kinetic

energy, which is determined by solving the
transport equation for turbulent kinetic energy.
However, no apparent improvement over the
Smogrinsky model is made. On the other hand, the
Smogrinsky model is superior to the one-equation
model in the following two aspects: (1) requires
less computation time without solving turbulent
kinetic equation; (2) needs to determine the
constant C; only.

For inclined plumes, excessive accuracy is
required in solving the govemning equation for
dénsity excess, since there is an interaction between
density and flow. In addition, a steep density
distribution often leads a solution with numerical
oscillation and diffusion. The computational results
show that this model is successful to overcome
these difficulties by using Hermitian interpolated
pseudo-particle scheme in solving the governing
equation.
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