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VORTEX CONVECTION GENERATED BY A V-SHAPED
OBSTRUCTION IN STRATIFIED FLOW

By PHAM Hong Son’ Takashi ASAEDA™ and Masamitsu ARITA™

ABSTRACT: Strong vortex convection can be generated by placing a V-
shaped plate in a horizontal flow. Experimental investigation was
conducted in linear stratified flow under variation of Reynolds number
Re, Richardson number Ri and dihedral angle of the V-plate. It was
found that the maximum vortex rising height can be attained with a
dihedral angle of about 90°. Large eddy simulation model with non-
uniform mesh and non-staggered grid scheme was used to study the
flow structure that shed from the plate. Experimental and numerical
results conclude that the rising height of produced vortices may reach 6
times the plate height and weakly depends on Reynolds number in
homogeneous flow. It has reduced in stratified flow to 4 times of the
plate height with R/ =0.12 and smaller than 3 times with R/ larger than
0.4. The simple V-shaped structure efficiently generated upwelling
current that can be used as mixing for environment purpose
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1. INTRODUCTION

In its' natural and unpoliuted state deep estuarine water is rich in nutrients, such as phosphorous and
nitrate salts, in a suitable ratio to sustain marine life. If such a source of nutrients can be convected to the
surface layer, where most of the biological production in the ocean occurs, it can be expected to promote
the growth of plants and fish in that region (Marino Forum 1990, Asaeda et al. 1991). In certain situations
however the deep water can stagnate and become eutrophic. In this case the advantage of rising the deep
water to the surface is that it can receive oxygen, thus preventing eutrophication. It is thus apparent that a
passive, efficient means of raising deep water to the surface would be an invaluable tool for preserving and
improving aquatic environments.

Asaeda et al. (1989) observed a strong upward current along the siope of the trailing ridge of a three-
dimensional sand ripple. They stressed the fact that the strong current was caused by a horse-shoe vortex
and intensified by the three-dimensional configuration of the ripples. It was found that a converging trailing
ridge holds a key to the formation of strong rising current because of it's inherent production of the horse-
shoe shape vortex. Based on this study it was concluded that a symmetrical V-shaped plate in plan with
finite height, placed with the bend of the V facing downstream, should be further investigated.

Asaeda et al. (1994) experimentally and numerically investigated the structure of vortices that shed from
V-shaped dihedral angle plate in homogeneous horizontal flow. They found that the produced vortices
coalesce with neibouring ones to form stronger vortices and moved upward. Here, more detailed vortex
structures were simulated with LES model.
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2. EXPERIMENTAL STUDY.

The experiment was performed in a flume of 8m long and 0.42m wide. A salt water with 40cm deep and
linear density variation was contained in the flume to serve as a stratified environment (see figure 1). The
density of the water on the surface was 1.0 g/cm® while at the bottom the water was heavier with the
density of 1.00, 1.02, 1.04 and 1.06 g/cm’ varying in each run. To ensure the linear density profile in the
flume the vertical density distribution was measured before the experiments.
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Figure 1. Experimental facility

A V-shaped dihedral plate of 2cm high, with each branch of 10cm long was placed downward on the
bottom of a float, which initially located near the one end of the flume. The float can move steadily along
the flume by a motor placing on the other end with the help of a connected string. The V-shaped dihedral
plate was placed so that their opened branches against the water when the float in motion. The main
velocity in the experiments, which can be regulated by the motor, was 2.3, and 6.7cm/s. The Reynolds
number Re was defined base on the main velocity U, the plate height d and the kinematic viscosity. The
Richardson number R, was defined as

dp gd’
K= p,dz U? M
where pis density and g, is the reference density.

Flow patterns were visualised by injecting dye (water blue) loading on the float from three injection
pipes mounted at both ends and at the center of the plate. As the float moves along the flume, the dye
injected and thus the flow patterns behind the plate can be clearly observed. The experiments were carried
out for 8 flow conditions with the difference in Richardson numbers and Reynolds numbers. In each flow
condition the dihedral angle 8 was varied from 30° to 180° with increments of 30° for each measurement.
Experimental conditions are listed in table 1.

Table 1. Experimental Condition

Run Average Reynolds Density Richardson Dihedral angle
Velocity Number at bottom Number of V-plate
U (cm/s) Re (g/cmS) Ri 6 (degrees)
&) ) 3) @ ) _(6)
1 6.7 1020 1.00 0.000 30, 60, 90, 120, 150, 180
2 23 340 1.00 0.000 30, 60, 90, 120, 150, 180
3 6.7 1020 1.02 0.043 30, 60, 90, 120, 150, 180
4 23 340 1.02 0.394 30, 60, 90, 120, 150, 180
5 6.7 1020 1.04 0.087 30, 60, 90, 120, 150, 180
6 23 340 1.04 0.788 30, 60, 90, 120, 150, 180
7 6.7 1020 1.06 0.131 30, 60, 90, 120, 150, 180
8 23 340 1.06 1.182 30, 60, 90, 120, 150, 180

—318—



3. FLOW PATTERNS

Figure 2 shows typical flow patterns which
were taken by a camera (run 5). It is supposed
that the structure of the flow obtained in the
experiments is similar to those which would be
produced by placing a V-shaped dihedral plate
at the bottom of the channel. An observation
showed that the structure of the flow just
behind the plate is similar to the case of the
homogeneous flow which reported in Asaeda
et al (1994). The vortices produced by the flow
passing around and over the edges of the plate
coalesces and was affected by bottom to form a
vortex. After being created, however, vortex is
strongly affected by the stratification of the
environment. Since vortices were formed near
the channel bottom, they were heavier than the
water on higher level. The self-induced upward
motion of produced vortices, therefore, was
being pushed downward. Consequently, the
rising height of vortices is reduced depending
on flow condition.

Ri=0.087; 6= 1200
4. NUMERICAL SIMULATION
Figure 2. Observed Flow Patterns
The large eddy simulation (LES) was selected
for present development. The filtered Navier-Stokes equations, continuity equation and equation of density
transfer in incompressible flow may be written in Cartesian tensor form as
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where the overbar denotes the filtering operation, u, are the filtered velocity components in three

directions, / is time, p is pressure, p is filtered density, p, is reference density , 7, are the subgrid scale

(SGS) Reynolds stress, g is gravity acceleration, &, is Cronecker delta, v is the molecular viscosity and a is

diffusivity. The filtered strain rate tensor is defined by

E’J :l(é‘l!"“"'@J (5)
2\0x, Ox,

The stress tensor 7,
(6)

T, =W, U

and the residual density flux

Gy = Pl — Pl (7
must be modelled
The Smagorinsky model which approximated the SGS Reynolds stress as

1 —
7, —}é‘,jr“ =-2v,§; (8)
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1s untilized where the turbulent viscosity v; is

v, =CAS]. ©
An analogous eddy diffusivity model (Eidson 1985, Zang 1990)
ap

q, =-a, - — (10)

k &k
where
a,=C},A’[§], (1
1[5, (12)

Ais filter width equals the grid size and coefficient C=0.2, C,=C/Pr, (Pr, is SGS turbulent Prandtl number)
was applied.

The equations (2-4) are then made dimensionless by velocity scale I/ which taken as entrance main
velocity of the channel, length scale H taken as depth of channel (vertical size of computational domain),
density by reference density (density of fresh water) and time by H/U .

A region of the channel with dimension of 1m long (10 times the branch of the plate or 50 times the
plate height), 0.4m width (4 times the plate branch or 20 times the plate height) and 0.2m depth (10 times
the plate height) was set for simulation. A limit of our computer capacity and its speed did not allow us to
compute for larger domain. According to experimental observation the computational domain is sufficient
in relation to the plate size for development of the expected flow and it is believed that boundary will not
effect in the flow structure.

To construct the mesh a series of zoned meshes initially constructed. The smallest grid size in finest
zone nearest the V-shaped plate was 0.0025m in all three directions. They are gradually increased in the
coarest zone to 0.0107m in horizontal direction and 0.00665m in surface.

The equations then are discretized on non-staggered mesh in finite difference form with second order
centred space differences for all viscous-like terms (including the SGS terms), and the pressure gradient
and divergence terms. Armfield (1991) proposed a finite difference scheme for solving the Navier-stokes
equation on a non-staggered mesh that preserves the features of the SIMPLE scheme. The method of
ensuring strong ellipticity of the discrete equation, by the addition of a term to the continuity equation,
designated the elliptic pressure term. The additional terms included are of the same order and smaller
magnitude than the leading order truncation error of the discrete continuity equation, and thus do not
adversely affect the accuracy of the solution. The sequence in which the equations are solved and the
convergence calculation is the same as that given in Armfield (1991). We choose this scheme to construct
the model in present study.

A constant normal velocity with 1/7 power law distribution near the bottom region, zero tangential
velocity, zero vertical velocity and linear density distribution is specified at the entrance. It is assumed that
there is zero velocity gradient and zero density variation in the normal direction at the exit. Zero velocity
gradient and zero density variation in tangential direction were imposed at both side boundaries. Zero
velocity gradient and zero density variation in vertical direction were specified at upper boundary. Zero
velocity and zero gradient density were imposed at bottom, and V-shaped plate body. Pressure is obtained
by a second order extrapolation from the interior on the all boundaries, while the normal gradient of the
pressure correction is set to zero on all the boundaries to allow the Poisson pressure correction equation to
be solved.

Zero tangential and vertical velocities were imposed at initial computation. The normal velocity with 1/7
power law distribution was specified for whole channel excluded the V-shaped body in which zero velocity
was imposed. At beginning the linear density distribution was given.

5. NUMERICAL RESULTS

The numerical study began with calculation for a set of flow condition U=0067m/s, A4p=0
(homogeneous fluid), 6=90°. It was found that it was better to calculate with time step Ar=0.001. With
larger At the stability was hardly achieved while with smaller At a lot of time was required for calculation.
At beginning stage, the computation was hard to converge. Once the several initial steps were over the

—320—



interactions were converged with the
convergence  criterion  being  the
requirement that the mean residual of the
continuity equation was less than 0.001.

The computed results at step 22000 15 T === ===
(=22 s) were taken for analyses. The RS = f'\_".";‘ Ty I3 S N
side view of the flow structure was given S *E7 NI
in figure 3(a) at y/@=1.25 and the cross osE = 3 SLLLLLLLiiiz T2z
section view of the channel was given in E= D SRS i Tl s ad e e
figure 3(b) at a distance behind the plate 10 00 10 20 0 .05mis
x/d=4.0. In these figures the lengths were x/d -
in nondimensional form corresponding to (a)

the plate height d, x, y, z were lengths in
normal direction, in tangential direction
and in vertical direction respectively. The
axis base was the point located in inner
side of the head of the V-shaped plate
and at bottom of the channel. A
triangular separation zone was formed
behind the plate, containing strong
recirculation as a result of the vorticity
shed from the flow passing over the
plate, which will subsequently be called
the surmounting flow. The flow passing
around the edges of the plate produced a
strong vortex with axis aligned
perpendicular to the floor, originating
from the bottom at the lee- side of the
plate end. The two vortices originating at Figure 3. Vortex structure near the V-plate flow
either end of the plate then join with the (a) side view, (b) cross view
other vortices produced by the surmounting passing over the upper edge of the plate to form a stronger
vortex. After shedding, the vortex head, that is the center region of the V-shaped vortex, was pushed
upward by both the surmounting flow and the horizontally converging flow in the wake. Both branches
were then stretched in the streamwise direction and forced to approach each other by the bottom effect.
The calculation then carried out for a set of flow condition U=0.067m/s 4p=0 and different dihedral
angle 8=30°, 60°, 120°, 150°. One selected centerline side view of obtained flow is shown in Figure 4. As
already noted previously, the upward currents behind the plate can be observed for all cases, among which
the strongest current was achieved with 6=90°.
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Figure 4. Calculated centerline side view of flow behind the V-plate
Run 1, 6=90°, Re=1020
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The obtained results for different
dihedral angle with regard to the 7

Richardson number were sketched in the 'y
figure 5 together with experimental o sl A Vo oge30®
results. The rising height of the vortex = X A g 60°
head was largest with the dihedral angle @ z o) o
of 90° and reduced with increasing g 5t v o 9 =90 N .
Richardson number. It reached 6 times 3 QDQ 6=120
the plate height in homogeneous fluid S s b -59 _ |
and about 4-5 times with Ri less than & .i
0.087 (runs 3 and 5). For higher R, this T i
height was only 2-3 times (runs 4,6,7). In & 3r
the case of very high R; (run 8), the &
produced vortices were very weak. 2t : « i ]
1 Il L
0 0.2 0.4 0.6 0.8 1
Richardsons Number
dp gd’
" pdz U’

Figure 5. Rising height of vortex in terms of R/ at x/¢=20,
Open marks: Experimental results,
6. CONCLUSION Full marks; Calculated results.

Experimental and numerical results show that the vortex wake behind the V-shaped plate is closely
related to a number of factors.

The formation of vorticies directly depends on the angle of attack which equals half of dihedral angle of
the plate 8 The strongest upward vortex is obtained with &is about 90°.

The optimal rising height of the vortex can be reached 6 times the plate height in the homogeneous
environment. However, it reduces in the stratified fluid with the increasing of the Richardson number. This
height was about 4-5 times the plate height 4 with R=0.012 and smaller than 3 times with R, larger than
0.4.

Apparently the 90° dihedral V-shaped structure is a simple and efficient means of generating an upward
rising current. Such a structure may be of practical application in regions with currents and small
Richardson number that require mixing for environmental reasons.

REFERENCES

1) Asaeda, T., Nakai, M., Manandhar, S K. and Tamai, N_, (1989), Sediment entrainment in channel with
rippled bed. J. Hydr. Engrg., ASCE, 115, 327-339.

2) Asaeda, T., Pham H,, S., Armfield, S., (1994), Vortex convection produced by V-shaped dihedral
obstruction. J. Hydr. Engrg. ASCE, 120 (11), 1274-1291.

3) Armfield S.W., (1991), Finite difference solutions of the Navier-Stokes equations on staggered and non-
staggered grids, Computer Fluids. Vol. 20, No. 1, pp 1-17.

4) Galperin B, Orszag S. A, (1993), Large Eddy Simulation of complex engineering and geophysical
flows, Cambridge University Press.

5) Patankar, S.V., (1980) Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation.

—322—



