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SHORT-TERM RAINFALL FORECASTING BY RADAR DATA
Xianyun CHENG" and Masato NOGUCHI™

Abstract: Rainfall is the most important and direct agent that causes flood disaster.
It is therefore the flood forecasting essentially depends on forecasting of rainfall.
With radar rainfall data remotely observed by the Foundation of River & Basin
Integrated Communications, i.e. FRICS, a new methodology is developed for
accomplishing short-term rainfall forecasting, wherein two main components are
included: (1) settlement of rainfall vector movement with modified correlation
method and Fuzzy rule, and (2) determination of spatial and temporal distribution
of rainfall intensity using neural network (NN) approach. Reasonable results have
been derived with a high accuracy through rainfall data on a real time basis.

Keywords: Short-term rainfall forecasting, Radar rainfall data, Neural networks,
Fuzzy rule

1 INTRODUCTION

One of the major responsibilities in flood hydrology is to make efficient forecasts of the
occurrence of flood events, so that flood emergency procedures can be implemented effectively.
For achieving this goal practically, besides well understanding the transformation of rainfall to
runoff, i.e. ramfall-runoff modelling, rainfall forecasting with an interest lead time becomes
significant and urgent owing to the reason that rainfall is the most important and direct agent to
cause flood. Particularly in recent years, as the continuous growth of exploiting and applying
physically-based model, rainfall forecasting in both spatial and temporal distribution within the
catchment comes to be obligatory. Consequently, a lot of rainfall models have been derived up to
now. However, rainfall is an extremely complex and difficult problem involving many variables
which are interconnected in a very complicated way, even for physically-based numerical models,
not only are super-computer required for processing huge amount of data, but also the accuracy is
restricted by available computational resources. Hence, a simple but practical method for rainfall
prediction based only on the numerical rainfall data from FRICS is desired.

Nagasaki is located at the western part of Japan, wherein rainstorms frequently attack this
region such as the Isahaya Flood in 1957 and the Nagasaki Flood in 1982. An early waming
system becomes important to prevent and mitigate the damages of flood. The utilization of the
Radar rain gauge provides a credible practice for acting this intention. However, because the
rainfall information from FRICS does not contain the predicted one, it is necessary to develop a
procedure for estimating rainfall.

The NN has great potential to handle complex and nonlinear phenomena in nature (Cheng
and Noguchi, 1996), while uncertain questions can be treated well with the Fuzzy theory. The
procedures for rainfall forecasting carried out here are accordingly made up two phases: the
computation of rainfall movement with modified correlation method and Fuzzy rule, and the
determination of rainfall intensity distribution by the neural network approach.
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2 RADAR RAIN GAUGE DATA FROM FRICS
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3 DETERMINATION OF RAINFALL MOVEMENT

3.1 Movement Determination of Known Rainfall Fields

Components of a movement consist of two aspects: velocity
and direction. It is very difficult to determine these two elements
accurately based only on the information of known rainfall data
owing to numerous influential factors such as wind speed and air
pressure. Consequently, a modified correlation method 1is
introduced here, which is mainly based on the consideration that
heavy rainfall will play a dominant role in flood formation, thus requiring more attention.
Mathematically, a series rainfall value-depended weights are served when applying the normal
correlation method.

A single grid size is 6 km by 9 km, so for more precise determination of the relative
movement of two adjacent rain fields, for example A and B, at time 7/ and 72, successive match
comparison is operated in two steps through the computation of Eq.(1): (1) in a grid scale, to find
out the maximum R, and then the distance corresponded. (2) based on the first step, the grid is
further sub-divided into 10x10 grids, and a similar procedure is utilized in this sub-scale to
determine the sub-distance. The final adjusted position will then be the rainfall movement from
Tlto T2
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Fig.2 Geometry definition of
overlapped grids

N . o e N

" (R4, x W, ~ RA)(RB, - RB) RA=—Y Rd, xW,,
R = = =1 e ) 4 NS
—_— — anda: —_ 1 &

\/Z(RA,xWM - RA)*Y (RB, x Wy, — RB) RB=—Y RB xW,,

i=1 i=1 i

Where RA4; and RB; are rainfalls in grid / of vectors 4 and B, respectively; R’ is the modified
correlation coefficient, different from the normal R; N is the grid number and # is the rainfall-
depended weights, givenby 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 for rainfall degrees of / to
9, respectively.

The rainfall in all overlapped grids at time 72 can be re-computed referring to Fig.2. In this
situation, the new rainfall value is represented by the shaded-area surrounded by four neighbored
grids of the original rain field, which can be easily calculated.

—156—



3.2 Movement Prediction of Rainfall Fields M1

The vanations of rainfall over a specific area Mst}’_T_' ——————————————— ]

can be systematized into two classes: one is external
change in the horizontal direction, mainly governed
by rainfall movement, and the other is comparatively
called internal change in the wvertical direction,
corresponding to the four stages of rainfall formation:
production, growth, decrease and disappearance.
The first class can be decided with the procedure
described in the previous section, while the
succeeding connections within the second class can
be simulated through the performance of a NN since Fig. 3 Illustration of overlapped rain fields

its special attributes. If the NN is taken as a "black box", then a pair of adjacent rainfall vectors (as
one pattern) is its input and output, respectively. A number of such patterns are used to train the
NN for identifying their internal nonlinear relationships. However, it is clear that the further the
rain field are apart, the weaker the connections will be and vice versa. Thus, it is unnecessary to
take too many number of pattemns as training examples of the NN. Additionally, the more the
patterns, the longer the training time and the smaller the common parts (overlapped areas).
Accordingly, for study here, three successive rainfall vectors from FRICS are used to predict the
fourth vector, over the common parts. This ensures that no matter how severe the rainfall moves,
the common area must include the whole Nagasaki county. Otherwise, this prediction will be
meaningless. The procedures associated with a simple Fuzzy rule are developed as shown in
Fig.3, where rain fields M1, M2, M3 and M4 are used to predict the M5 rain field.

If ¥1, 2 and V3 represent movement between two successive stages among M1, M2, M3
and M4, which can be decided with the method described in the former section, then the predicted
V4 (from M4 to M5) is calculated by Eq.(2), where ¢, §and A are the parameter weights, which
can be judged using a simple Fuzzy rule. Firstly, based on Relative Humming Distance, the close
degrees from M/ and M2 to M3 are computed with Eqs.(3) and (4) respectively, where:
d,=|V3-V1 and d,,=|V3-V2 , w;and w are close degrees from M/ and M2 to M3,

respectively.
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Secondly, if the relative close degrees from M1, M2 and M3 to M4 are taken as &1, £2 and &3,
respectively, then parameter ¢ is defined as:

~ 7 52 ...... (6)
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From experience, parameters of 1, £2 and £3 are valued as 0.6, 0.8 and 1.0, respectively.
The comparison between calculated results using this method and observed one (if we consider
the results from the modified correlation method as the “observed one”) is shown in Fig.4. The
outcome 1s quite acceptable.
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4 DETERMINATION OF RAIN INTENSITY

After the movement position and subsequently
the common parts are settled, the NN can be utilized
for forecasting rainfall intensity for each gnd.

4.1 The Neural Network

A typical three-layer network has always an fos0 1130 1230 1 1430 1530 ese A
input layer, an output layer and a hidden layer as Fig 4. Comparisons Between Observed
illustrated in Fig.5. Each layer is made up of several and Calculated Movement
nodes (neurons), and layers are interconnected by sets  1nput layer Output layer
of weights. The nodes receive input either from Hidden layer

d
outside the model (the initial inputs) or from the :

interconnections. The main equations and relative
notations of the NN are listed in Tablel. Referring to
Fig.6, for a neuron k, the operations of a node
transformation are summarized as two stages: (1)
integrate all incoming information signals using a ()—> d
propagation rule given by Eq.(8), and (2) update the
level of its activation using a sigmoid function defined
by Eq(9) Fized input Kosel Thoety

The training process or learning is a process by o
which the free parameters of a neural network are detivation
adapted through a continuing process of simulation by %
the environment in which the network is embedded.
The type of learning is determined by the manner in ’ "
which the parameter changes take place (Haykin, i
1994). In this study, the error back-propagation
process is introduced here as a training strategy which
basically consists of two phases: (1) a forward phase, in which an input vector is propagated
through the network layer by layer. Finally, the output information is produced as the
response of the network. During this phase, the synaptic weights are all fixed. (2) a backward
phase, in this stage, the synaptic weights are all adjusted in accordance with the difference in
the calculated and desired information signal at the output unit. The training continues until
either the desired criteria are achieved or some maximum number of iterations is completed.

The algorithm cycles as follows: (1) initialization: set all the synaptic weights and bias
levels of the network to small random numbers, usually between 0 to I or -1 to /. (2) forward
computation: the input vector propagates forward layer by layer with Eq.(8) and Eq.(9) to
produce g(h) and y(m). If neuron j is in the output layer, hence, compute the error signal with
Eq.(10). (3) backward computation: compute the 's of the network by proceeding backward
layer by layer, for neuron j in output layer, using Eq.(11), while for neuron i in hidden layer,
using Eq.(12). Hence, if take the loop of adjusting the synaptic weights of the network as a
time series with index ¢, according to the generalized delta rule shown in Eq.(13), Eq.(14) is
adopted from the neuron p in input layer to the neuron / in hidden layer, while Eq.(15) is used
from the neuron i in hidden layer to the neuron j in output layer. (4) iteration: iterate the
computation by presenting new epochs of training examples to the network until the free
parameters of the network stabilize their values and the acceptable criteria are reached.

d2

Fig.5 Typical three-layer neural network

Fig.6 Non-linear models of a neuron
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Tablel Useful equations and relative notations of the NN

I =iwb_xv T PR . If: net linear combined output
= wy;: the synaptic weight of neural £
1 ¥ the output signal of the neural &
ykzg(‘uk)z______(g) - the activation functi — I - by buis the bi
1+exp(44,) €(): the activation function. uy = Iy - by by 1s the bias
. value
e(m)=d,(m)—y;(m) «oeeeerrneemnen ~(10) x(n), d(m): the input and output vector of the NN (n=1,

an 2,..Nandm=1, 2,.. M)

q(h), y(m) : the output vectors in hidden layer and output
layer respectively (h=1,2,...H and m=1,2,...M)

dj(m ): the jth element of the desired response vector d(m)

@(h):q‘,'(h)z_:é;(m)wy e (12)

WD =w(t)+ Aw(t) -veereenennen(13) ¥'(), ¢'(): the derivations of the activation in hidden layer
and output layer, respectively

A1) = aw, (8) = w, (1 = D]+ 76,(1)x, (£)---(14) n,o: the leaning-rate and the momentum constant

Aw(r) = afw (1) = w, (1 = D]+ 76,(1)g,(1)---(15)

4.2 Rain Intensity Settlement

Based on the procedure carried out in
section 3.2, three patterns (input-output) are
formed as training examples of the NN,
shown in Fig.7. Before conducting the
training process, the number of hidden node,
learning rate  and the momentum o must
be decided. There is no well-defined .
algorithm for determining the optimal  Input Rain Field Hidden layer  Output Rain Field
number of hidden node (French, et Fig.7 Neural Network for rainfall forecasting
al.,1992). Taking too high values of the
hidden neural number will greatly increase the training time but without significant
improvement on training results; conversely, too low values will not lead to convergence of
training process. So the number adopted here is 10. The parameter m and o were set at 0./
and 0.9 at the beginning of training and decreased to 0.01 and 0.1 as the procedure goes on.
This ensures to assist convergence toward the optimal solution.

Due to the different movement of rainfall field, the grid number within the common
parts of the five successive rainfall fields are dissimilar. The criterion for judging the training
result is the normal correlation coefficient R. The training procedure will be stopped when the
R values of all training examples reach 0.99. When all synaptic weights of the NN are settled,
the predicted one (outputs of the NN) can be calculated with inputs of known rainfall
information. The normal correlation coefficient R and CSI (Critical Success Index) are
applied to evaluate the results of rainfall prediction. The CST is defined as:

CSI =

x 100%------(16)
a+o+c¢

where: a, b and ¢ are total numbers connected to the grids with the situations: (1) correct
prediction with rainfall, (2) wrong prediction with rainfall and (3) wrong prediction without
rainfall, respectively.
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The results are graphically demonstrated !
in Fig.8. The lead time of forecasting is 30 of b s
minutes. It can clearly be seen that CS/ varied as
the different threshold value selected. This is

0.6

R and CSI

due to a fact that its value decreases if spatial 04 i[O TR AL
distribution of rainfall intensity is not exactly posraninid I
anticipated, and also that a proportionality of B st estola 3)
rainfall field to a whole area interested is not so 0 ‘ . -

. . . 11:00 12:00 13:00 1400 15:00 16:00 17:00 18:00
large. This things suggest that appropriate Time
parameter should be programmed for estimating Fig 8. Temporal variations of R and CSI

an accuracy of the goodness of prediction. Considering above-mentioned matter, present short-
term rainfall forecasting seems to be done fairly well. A calculated rainfall field and its original
one from FRICS are displayed in Fig.9 and Fig.10, respectively.
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Fig.9 Observed rain field at 11:30 Fig.10 Calculated rain field at 11:30
5 CONCLUSIONS

Since rainfall is one of the most difficult elements to be determined, the outcomes obtained
up to now show potential for short-term rainfall prediction. If the four stages of rainfall formation
(production, growth, decrease and disappearance) can be distinguished when applying the NN in
the second phase of the study, better yields can be expected.
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