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PROPOSAL OF TWO DIMENSIONAL FLOOD
ROUTING METHOD
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This study describes two dimensional and one dimensional hydrodynamic models, to simulate watershed
flow by treating surface runoff on a watershed of simple geometry. This model is formulated by a
hydrodynamic system with the assumption of unsteady flow as steady flow which can reduce computation
time. The numerical computation for this model is executed by use of the eight point implicit scheme. The
Incremental Dynamic Programming(IDP) technique is adopted for the optimization of grid size during the
computation. The model is applied to compute the routing of the floods in the Wichon IHP experimental
basin located in southern part of Korea. Comparison of the results between the proposed model and the
general type of two dimensional and one dimensional models indicate that the proposed model is nearly as
good as, and computationally much faster than, the general two dimensional and one dimensional models.
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L. INTRODUCTION

A number of one dimensional flood routing model have been developed and these model can route flood in a channel
accurately 1), A one dimensional model is possible for channe] routing but is impossible to simulate the spreading of flood
in a basin area because of two dimensional characteristics of flood propagation 2). The two dimensional flood routing is
simulated with numerical approximation and is needed to be improved as the fast computation time with easy equation.
For this objective, the assumption of unsteady flow as steady flow is suggested as the deleting the unsteady term in the
governing equation. And to make accurate and capable a numerical simulation, it is necessary to pay attention to both the
computational scheme for calculation and computational grid size. The computationally useful method for grid optimization
is developed, based on a measure of the interpolation error associated with numerical simulation model. The proposed [DP
optimization technique 3) is used for the optimization of grid size and adjustment of parameters. The result is intended to
be used to improve the quality of numerical simulation solutions by altering the location of computational nodes. Finally
the proposed two dimensional model and one dimensional model are compared with general type of model and observed
data.

2. THEORETICAL FORMULATION
1) Basic Theory of Proposed Model

By the assumption of incompressibility, uniform velocity distribution in vertical direction and small bottom slope, the
general governing equations for two dimensional unsteady flow are expressed in conservation form ® as
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where I is flow depth, u is velocity component in X direction, v is velocity component in Y direction, g is acceleration
due to gravity, Sox, Soy are bed slopes in X and Y directions, respectively, and Sfx, Sfy are friction slopes in X and Y
directions, respectively.

In general case, the friction slopes (Sfx and Sfy) in X and Y directions are expressed as

Sfx=nzuh2+v2 S fy =t 2v Yu24v2 @
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where n is Manning’s roughness coefficient. When assuming that the flow is steady, the governing equations for two
dimensional steady flow are expressed from eq.(1) as follows:
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2) Numerical Approximation Scheme

In order to use the numerical approximation, the vector term of U, E, F, § is divided by two components and eq (1) is
written as
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The vector components of flow U is determined by the discrete points of variables(x,y,t) through the egs. (4) and (5).
To make accurate and effective a two dimensional simulation model, the computational scheme for calculating the
computational grid size is carefully treated. [n this study the proposed 8 point implicit scheme was applied to compute the
accurate result. The time derivatives are approximated by a forward different quotient centered between the ity or i+1th
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points along X axis and jtp or j+1tp points along Y axis, i.e.,
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The proposed eight point schemel). is shown in equation (7) where P is the variables

KX —Plel 4+P2KX1 3+P3KX1 2+P4le 1+p5K"l'*-PGKXHl"'P7Kx14‘2+PBKX”’3 O}
Kyl =PiKy g+ PoKyL 3 +P3Ky L+ PaKy L +PSK +POKy L 4PTK L0+ PEKy 5
P1=0.01438a3-0.08173a2+0.06934a

P=-0.01678a3-0.03899a2+0.05577a
P3=0.25057a3+0.0591432-0.30971a

P4=-0.66780a3+0.63087a2+1.03693a ®

P5=0.66780a3-1.37254a2-0.29527a+1
Pg=-0.25057a3+0.81085a2-0.56028a
P7=0.01678a3-0.08934a2+0.07256a
Pg=0.014382a3-0.08173a2+0.06934a

The quality of finite element solution is improved by optimizing the disposition of the nodes. The conventional study
relied on their experience to restrict grids that make an efficient use of available technique. [t is also possible to improve
the quality of existing meshes by iteratively using predefined guidelines for the distribution of nodes.

3) Fundamental Theory of Optimization Model
The proposed IDP method considers the development of such a criterion and the fundamental theory of equation is

given as followings.

If permit the policy to vary by, 6u(t),§u(t)1,te<t0,tf> equation of new enhanced policy given by

U(t)=U(t)+du(t)+8u(t); &)
will influence the trajectory of multi unit system. The new trajectory will given by
S(t)=S(t)+ds(t)+0s(t)1 (10)

where U(t) is decision vector of each reservoirs, S(t) is state vector of each reservoirs, 5u(t) and f)s(t) are changes in trial
policy , respectively 5u(t)1 and 58(t)1 are adjustable values for enhanced IDP programming which are used in local
calculation in each domain, for tE(to,U)- In the following, in the place of 611(0 and 65(0 the variables
AU(t)=6u(t)+5u(t)1, As(t)=55(t)+65(t)1(which include the adjustable vectors 5u(t)1 and 6s(t)1) will used.
Introduction of eq.(14) and (15) into fundamental DP(Dynamic Programming) will produce a set of equations such as

i1
a(s;ds)_q) §+As, U+AU @

"

MaximizeF(Sf, tf>=f R{E+As, U+AU, t)dt (12)

0

OF'GHas, ) _

= ax{R[s+As, T+AU, u{Fs[s+as, 1], ds+as, T+au, djau a3)

[t must be noted that as yet no restrictions have been put on the magnitudes of AS and Ay F;(§+AS, t] may be

expressed by a power series expansion with respect to g as follows
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plstas, s t]+< [5+as, AS)+0.49(As,f;E§’ 3 AS>+h.t (19)

F'l5 t=Fs (+C[5 1 (15)

where F‘[§ t] is the maximum return due 10 the optimal trajcetory measured with respect to the trial trajcetory from time

to ot S t}is the return due to the trial trajectory Ffrom time g to tg. C*[‘S’ t]is the difference between the maximum

return due to the optimal trajectory S‘(t) and trial trajectory. F*[§ t] is an m-dimensional vector equal to
* *

(aF

. zF . .
3?,1=1,2,...,m) evaluated at 's'(t) F;E t] is an m times m-dimensional matrix equal to (a_sié's?l’ j=1,2,...,m)
1

evaluated at §(t). *[§, t]A is a m-dimensional vector and h.t stands for higher order terms. F*[—S—a t]AS is expressed
138 s 8§

Fs[s+As t] Fi[S, +F S TS, tas+h.t (16)
Substituting eqs.(14),(15) and (16) into eq.(13) for the sake of convenience, dropping [é', t] wherever possible

9F 9" [9Fs s \ o aoas, 5% As Vi
at ot at’ a

an
=max{R[s+As, U+AU, th{Fs+FiAs)+h,t, ds+As, T+AU, t])

The solution of eq.(15) will provide Au”(1),t&(ty, t;) » which is the amount that the trial policy must be incremented at
time 1 to obtain the optimum policy, thus

ut(O)=u(t)+Au" (t), t=(t0, tr) (18)
where u‘(t) is the optimum policy. But the solution of €q.(17) requires possibly infinite computing time and storage

requirements for the parameters of the power series expansion. In order to make the solution of eq.(16) possible, truncation

of higher order terms is needed. This can only be justified if Ag is small enough to make these terms negligible. Assuming

that ¢ is kept small enough so that the highest order terms retained in eq.(17) are quadric

‘3—<‘9F : >0 49<As s As >ht
ot 9 (19)
—max{R[s+As U+AU, t+(FS+FSSAs)+ht ¢{s+As U+AU, t])

aF[— =
FS=¥[8+AS, t]:Fs[s_ t]+FssAs (20)
Hs+As, t=Hs fre+As)0.49(As, fos As) @

This process reduces the global optimization of eq.(17) to a local optimization, 1.e., optimization takes place in the
neighborhood of the trial trajectory. Therefore, solution of eq.(19) is an improvement over that of trial trajectory and not an
optimum one. It is because of this F has replaced p* in eq.(19). However if the improved trajectory is optimized again in
its neighborhood, 1t may prove a still better trajectory. By use of local optimization with an adjustable vector, the trajectory
gradually converges with the optimal trajectory.
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3. APPLICATION TO THE REAL BASIN

The study area in is located at the southern part of Korea as shown in Fig.1. The geometrical data of grids are 10 x 10

m and the initial conditions at the upstream and downstream boundaries are specified by the observed datab).

Basiné

Basin 5

Fig. 1 The schematic configuration of study basin

The simulation was executed according to station points (from 1 to 6) as shown in Fig. 2. The comparison among
observed, approximated and general type model represents good agreement. The computational examples presented here
were performed on an IBM compatible personal computer with pentium processor. For each of the examples, the execution
time was approximately 31 min., 57 min., respectively, for the proposed two dimensional approximation model, general
two dimensional models. The different execution times for the approximation and general models are partly due to optimized
smaller computation grid adopted with IDP technique, and partly due to faster convergence of numerical results.
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Fig.2 The comparison of hydrographs among observed, unsteady 1 dimensional model and steady 1 dimensional model

Through the two dimensional approximation model, velocities and depths were computed as shown in Fig.3 and Fig.4.
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Fig.3 The comparison of velocities among observed, unsteady 2 dimensional model and steady 2 dimensional model
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Fig.4 The two dimensional distribution at point 1

4, CONCLUSION

The two dimensional and one dimensional hydrodynamic models are employed to simulate the watershed flow in this
study. For reducing the computational time and simplifying formulation, the assumption of unsteady flow as steady flow
is suggested. To make accurate and capable a numerical simulation, the parameter calibration and grid size are executed by
the use of IDP optimizing technique. The proposed eight point scheme can also solve the numerical approximation well.

The suggested approximated one dimensional mode] can simulate the channel flow in the real basin as accurately as
general type of one dimensional model.

The proposed approximated two dimensional model is nearly as accurate as the general type of two dimensional model
and is faster in computation and easier in numerical converge due to grid size optimization and simple form of equation.

The suggested approximated two dimensional model simulates the propagation of flood wave front and shows a good
agreement between observed velocity and computed one.
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