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A TWO-DIMENSIONAL SIMULATION FOR PROPAGATION
OF FLOOD WAVES

by Mohammad Ebrahim BANIHABIB * and Muneo HIRANO'*

A two-dimensional model is introduced for simulation of wave
propagation of flood flows. The model has implicit finite difference
scheme for integration of conservative form of equations of depth-
averaged two-dimensional flow. Artificial viscosity is suggested as
dissipative interface device and it can control nonlinear instability of
two-dimensional model. Advantages of using smaller ratio of tail
water to upstream head have been illustrated by examples. The
propagation of flood waves in flood plain, which comes from steep
channel, has been simulated and the change of flow condition has
been illustrated.
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1-Introduction

A model for the simulation of flood is required for the analysis of flood propagation generated by
storms or failure of dams and dykes. One-dimensional model has been used for these analyses widely and
still research is done to modify them (Kutija 1993). However propagation of flood flow can be simulated
better by two-dimensional models especially in flood plains. The computation of two-dimensional shock is
more complicated than the computation of one-dimensional flood due to the need for suitable simulation of
boundary condition and instability problems in two directions.

The simulation of flows by numerical models are suffering from different numerical instability
problems. Explicit schemes depend on the Courant-Friedrichs-Lewy condition for numerica] instability and
they suffer from the requirement of small computation time steps (Zhao et al. 1994). Larger time steps
become more important in modeling discontinuous flow, in which it is required longer simulation's time.
Another instability problem, from which numerical schemes suffer, is nonlinear instability. Implicit schemes
are unconditionally stable due to Courant criteria, but still nonlinear instability develops slowly until it spoils
calculations. Simulation of discontinuous flows such as shocks have more instability problems than
continuous flows (Abbott, 1989). Artificial viscosity is suggested to be used for dissipation of nonlinear
instability. Illustrated examples present shock capturing ability of the model in simulation of the propagation
of flood waves.

2-Governing Equations
Propagation of flood on flood plain is a kind of the discontinuous flow which includes steep front. For
case like this, it has been proven that the weak solutions of homogeneous differential equations in the
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conservation form tend to the discontinuous solutions of the integral relationships (Lax, 1954; Abbott 1979).
Therefore, it is necessary to use conservation form of the governing equations for the simulation of the
propagation of the flood waves.

Equations of two-dimensional unsteady free-surface flow may be derived by depth averaged integration
of three dimensional equations of conservation of mass and momentum by following assumptions: (1).The
pressure distribution is hydrostatic. (2) The velocity distribution is uniform over the flow depth. (3) The
channel bottom is rigid. (4) Bottom shear stress is dominant and all other shear stresses are neglected. (5)
Friction losses are computed using steady state formulas. (6)The channel bottom slope is small. These
assumptions are usually valid except that the pressure distribution may not be hydrostatic, where water
surface has sharp curvatures. The matrix form of two dimensional momentum conservation equations can be
written in the Cartesian orthogonal coordinate system with the x-y plane parallel to the channel bottom as

follows:
Ut+Ex+ Fy+S=0 ........................................................................................................................ e
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where h = flow depth; u = flow velocity in the x-direction; v = flow velocity in the y-direction; g =
acceleration due to gravity; S, = channel bottom slope in the x-direction; S, = channel bottom slope in the
y-direction; 6, = inclination of x axes; Oby o= inclination of y axis; and S fx and § 7 are the slopes of the
energy grade lines in the x and y-directions, respectively. According to above assumption S, and § 5 are

computed by using the steady state friction formulas like Manning formula. These factors can be
overestimated and unrealistic when the depth is too small. A small depth #, may be used to avoid from
overestimation (Richtmyer and Morton 1957) as follows:

g nluvute? 2a) g nlvNulty?
i 4/3 fy (h+ h1)4/3

(h+h)
in which n = Manning's roughness coefficient; h, = required minimum depth for energy loss calculation.
Because equation (1) has the source term S and the term acts as source or sink, it is not in full conservation
form. Since the contribution of this term is usually small the conservative properties are not significantly
impaired (Chaudhry 1993). Since the governing equation, equation (1), is nonlinear and first order
hyperbolic partial differential equations, no analytical solution are available except for very simplified one-

dimensional cases. Therefore, they are solved numerically.

3-Numerical Scheme

Equation (1) has been integrated by Implicit Scheme of finite difference method. The Alternating
Direction Implicit (ADI) algorithm has also been employed to decrease the number of equations that should
be solved simultaneously. In order to use ADI algorithm, each vector of the U, E, F and S can be spilt into

two components. Therefore equation (1) may be written as follows:

—442—



Uy + By + Fy 48, =00 ceeese e 4
where:
05h 05 h 0.5 uh 0.5 uh
U=l wun | > U= 0 | . E = u2h+(1/2)ghcos 6,,,| - E,= 0
0 vh uvh
0
0.5 vh
0.5 vh 0
F = uvh , F,= 0 , S = -gh(S, cos QbXO—Sfx-sin 8,.0) >
0 .
v2h +(1/2)gh%cos 6,00 0
0
S, = 0

—gh(Schos QbYO-Sfy -sin QbyO)

Components of the vector of flow variables (U) can be determined at the discrete points of the
independent variables (x, y and 1) by numerical integrating equations (3) and (4). The notation, which are
used here for the finite-difference mesh in x, y and ¢ space, are as follows. The number of grid in x-direction
is counted by the subscript i, the y-direction by the subscript j and the t-direction by superscript k. The
vector of flow variables (U) is known at k time level and its components are to be determined at k+1 time
level. Then for equations (3) and (4), the following finite difference equations can be derived for grid point i

and j.
k+1 *
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Backward space differences have been used in x and y-directions and forward space difference has been
used for time. Since the scheme is implicit, it uses k+1 time level for space derivatives excepted for cross
terms in Fly and sz , in which we use mix time level as following. In equation (5), v and in equation (6), u
are in time level k and all other components of vectors are in time level k+1. The scheme has four half time
steps. In first and third times' steps, equation (5) is used to determine the components of U . In second and
forth times' steps, equation (6) is used to determine the component of U,. Since original differential
equations are nonlinear partial differential equations, the result of these finite equations is a system of
nonlinear equations which have to be solved simultaneously.

4-Nonlinear instability

In propagation of flood waves, the governing partial differential equations of flow, equation (1),
become highly nonlinear because of existence of the advective terms. In such cases even appropriate
numerical scheme may have instability problems. Even though Courant instability problem is solved by
using implicit scheme, these schemes still are suffering by nonlinear instability growing slowly until it spoils
calculation. The dissipative interface can be useful to suppress nonlinear instabilities. Here, the procedure of

Jameson et al. (1981) is used. Since non linearity of governing equations is high in front area, it is important
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to employ more dissipative interface in front area than other areas. This procedure adds an additional
dissipation to large gradients while it leaves smooth area relatively undisturbed. Numerical experiments
show this artificial viscosity can suppress oscillation of nonlinear instability in different Courart numbers.

5-Model Applications

Two examples have been analyzed to demonstrate the application of presented scheme on the
simulation of propagation of flood waves. These problems have been studied to illustrate the ability of the
model to simulate the two-dimensional propagation of flood waves on the flood plain located in the end of
steep channel. This exists when steep mountainous channel ends to flood plain like debris fan. Because of
discontinuous values of both velocity and depth, as a numerical problem it has more discontinuity in initial
conditions. In these examples, a steep channel with 20cm-wide ends to expansion of 190cm-wide and
170cm-long flood plain (figure 1). The flood plain has one degree inclination in x-axis direction and -0.5
degree inclination from middle of plat in both sides of y-direction. The flow at the end of the steep channel
has 3.25cm-depth. It enters flood plain with 62.17 cm/s velocity. The propagation of flood waves has been
situlated in the flood plain. The mesh size of ScmxScm has been used for simulation. The perspectives of
two dimensional propagated waves of flood in the flood plain have been illustrated after 2.5 seconds in
figure (2). The flow condition is supercritical when it leaves steep channel and enters flood plain. In the
flood plain flow condition changes from supercritical to subcritical in x direction. In y direction flow
condition stays subcritical because of inverse slope.

Figure (1). Configuration of the steep channel and flood plain

h=3.25 cm & U=62.17 cm/s
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Figure (2). Propagation of flood waves after 2.5 seconds for example (1)

Figure (3). Propagation of flood waves after 2.5 seconds for example (2)
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In the second example, slope of flood plain in x direction has been increased to 3 degrees. The
perspective of flood has been showed after 2.5 seconds in figure (3). In this example flow condition stays
supercritical in x direction while in y direction due to inverse slope it is suberitical.

The oscillation of flow variables by nonlinear instability has been dissipated by the artificial viscosity
successfully. The ratio of the depth in the flood plain to the depth of the steep channel reduced to 0.01 which
the MacCormack scheme failed for this ratio less than 0.25 and the Gabutti Scheme for less than 0.2
(Fennema and Chaudhry 1990). In the examples nonlinear instability of discontinuous flow increases by
using discontinuous initial values of velocity and depth instead of the only discontinuous depth in typical
dam breach. Comparison between figures 2 and 3 shows effect of steeper flood plain on shape of flood
waves. In figure (2), hydraulic jump exists in the end of steep channel. Since flow condition stays
supercritical in figure (3), there is no hydraulic jump. These examples demonstrate ability of the scheme in
the simulation of propagation of flood waves.

6-Conclusions i

A two-dimensional model is introduced for simulation of wave propagation of flood flows. The model
has implicit finite difference scheme and uses ADI algorithm to reduce number of equations in system of
equations. The artificial viscosity is suggested to dissipate the oscillation of flow variables due to nonlinear
instability. It can control the oscillation of flow variables in shock area successfully without disturbing other
parts. The scheme has ability of shock capturing of two-dimensional discontinuous flow as demonstrated by
the examples. The Model has been applied to the simulation of wave propagation of flood flow in the flood
plain with inclination in x and y directions. The ratio of tail water to upstream head reduced to 0.01 while the
MacCormack scheme can not work for the ratio less than 0.25 and the Gabutti Scheme for less than 0.2
Ability of shock capturing of the model has been examined when both initial velocity and initial depth are
discontinuous. In the examples, instability has been controlled successfully. The flow conditions and the
propagated waves of flood have been illustrated.
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